Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Numerical Solver of Ising Optimization Problems via Pruning and Domain Selection (2312.05837v2)

Published 10 Dec 2023 in quant-ph and cs.ET

Abstract: Quantum annealers, coherent Ising machines and digital Ising machines for solving quantum-inspired optimization problems have been developing rapidly due to their near-term applications. The numerical solvers of the digital Ising machines are based on traditional computing devices. In this work, we propose a fast and efficient solver for the Ising optimization problems. The algorithm consists of a pruning method that exploits the graph information of the Ising model to reduce the computational complexity, and a domain selection method which introduces significant acceleration by relaxing the discrete feasible domain into a continuous one to incorporate the efficient gradient descent method. The experiment results show that our solver can be an order of magnitude faster than the classical solver, and at least two times faster than the quantum-inspired annealers including the simulated quantum annealing on the benchmark problems. With more relaxed requirements on hardware and lower cost than quantum annealing, the proposed solver has the potential for near-term application in solving challenging optimization problems as well as serving as a benchmark for evaluating the advantage of quantum devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. E. Ising, “Contribution to the theory of ferromagnetism,” Z. Phys, vol. 31, no. 1, pp. 253–258, 1925.
  2. J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum, vol. 2, p. 79, 2018. [Online]. Available: https://quantum-journal.org/papers/q-2018-08-06-79/?fbclid=IwAR0FRb9N2fas7ETWu2M40OS6prXB5QvFME_WRELpm2CAUcccVIEzA_UmLn4
  3. A. Lucas, “Ising formulations of many np problems,” Frontiers in physics, vol. 2, p. 5, 2014. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fphy.2014.00005/full?ref=https://githubhelp.com
  4. P. McMahon, “To solve optimization problems, just add lasers: An odd device known as an optical ising machine could untangle tricky logistics,” IEEE Spectrum, vol. 55, no. 12, pp. 42–47, 2018. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8544983
  5. S. J. Weinberg, F. Sanches, T. Ide, K. Kamiya, and R. Correll, “Supply chain logistics with quantum and classical annealing algorithms,” Scientific Reports, vol. 13, no. 1, p. 4770, 2023. [Online]. Available: https://www.nature.com/articles/s41598-023-31765-8
  6. S. Bao, M. Tawada, S. Tanaka, and N. Togawa, “Multi-day travel planning using ising machines for real-world applications,” in 2021 IEEE International Intelligent Transportation Systems Conference (ITSC).   IEEE, 2021, pp. 3704–3709. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9564593
  7. Z. Pan, A. Sharma, J. Y.-C. Hu, Z. Liu, A. Li, H. Liu, M. Huang, and T. Geng, “Ising-traffic: Using ising machine learning to predict traffic congestion under uncertainty,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 8, 2023, pp. 9354–9363. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/26121
  8. H. Hussain, M. B. Javaid, F. S. Khan, A. Dalal, and A. Khalique, “Optimal control of traffic signals using quantum annealing,” Quantum Information Processing, vol. 19, pp. 1–18, 2020. [Online]. Available: https://link.springer.com/article/10.1007/s11128-020-02815-1
  9. D. Inoue, A. Okada, T. Matsumori, K. Aihara, and H. Yoshida, “Traffic signal optimization on a square lattice with quantum annealing,” Scientific reports, vol. 11, no. 1, p. 3303, 2021. [Online]. Available: https://www.nature.com/articles/s41598-021-82740-0
  10. D. Venturelli, S. Mandrà, S. Knysh, B. O’Gorman, R. Biswas, and V. Smelyanskiy, “Quantum optimization of fully connected spin glasses,” Physical Review X, vol. 5, no. 3, p. 031040, 2015. [Online]. Available: https://journals.aps.org/prx/abstract/10.1103/PhysRevX.5.031040
  11. M. Parizy, P. Sadowski, and N. Togawa, “Cardinality constrained portfolio optimization on an ising machine,” in 2022 IEEE 35th International System-on-Chip Conference (SOCC).   IEEE, 2022, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9908082
  12. D. Venturelli and A. Kondratyev, “Reverse quantum annealing approach to portfolio optimization problems,” Quantum Machine Intelligence, vol. 1, no. 1-2, pp. 17–30, 2019. [Online]. Available: https://link.springer.com/article/10.1007/s42484-019-00001-w
  13. M. Benedetti, J. Realpe-Gómez, R. Biswas, and A. Perdomo-Ortiz, “Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning,” Physical Review A, vol. 94, no. 2, p. 022308, 2016. [Online]. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.022308
  14. F. Böhm, D. Alonso-Urquijo, G. Verschaffelt, and G. Van der Sande, “Noise-injected analog ising machines enable ultrafast statistical sampling and machine learning,” Nature Communications, vol. 13, no. 1, p. 5847, 2022. [Online]. Available: https://www.nature.com/articles/s41467-022-33441-3
  15. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, “A quantum adiabatic evolution algorithm applied to random instances of an np-complete problem,” Science, vol. 292, no. 5516, pp. 472–475, 2001. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.1057726
  16. M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk et al., “Quantum annealing with manufactured spins,” Nature, vol. 473, no. 7346, pp. 194–198, 2011. [Online]. Available: https://www.nature.com/articles/nature10012
  17. T. Albash and D. A. Lidar, “Adiabatic quantum computation,” Reviews of Modern Physics, vol. 90, no. 1, p. 015002, 2018. [Online]. Available: https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.90.015002
  18. Z. Wang, A. Marandi, K. Wen, R. L. Byer, and Y. Yamamoto, “Coherent ising machine based on degenerate optical parametric oscillators,” Physical Review A, vol. 88, no. 6, p. 063853, 2013. [Online]. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.88.063853
  19. T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate, T. Honjo, A. Marandi, P. L. McMahon, T. Umeki, K. Enbutsu et al., “A coherent ising machine for 2000-node optimization problems,” Science, vol. 354, no. 6312, pp. 603–606, 2016. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.aah4243
  20. V. Dunjko, J. M. Taylor, and H. J. Briegel, “Quantum-enhanced machine learning,” Physical review letters, vol. 117, no. 13, p. 130501, 2016. [Online]. Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.130501
  21. M. Ohzeki, “Breaking limitation of quantum annealer in solving optimization problems under constraints,” Scientific reports, vol. 10, no. 1, p. 3126, 2020. [Online]. Available: https://www.nature.com/articles/s41598-020-60022-5/
  22. S. Okada, M. Ohzeki, M. Terabe, and S. Taguchi, “Improving solutions by embedding larger subproblems in a d-wave quantum annealer,” Scientific reports, vol. 9, no. 1, p. 2098, 2019. [Online]. Available: https://www.nature.com/articles/s41598-018-38388-4
  23. F. Böhm, T. Inagaki, K. Inaba, T. Honjo, K. Enbutsu, T. Umeki, R. Kasahara, and H. Takesue, “Understanding dynamics of coherent ising machines through simulation of large-scale 2d ising models,” Nature communications, vol. 9, no. 1, p. 5020, 2018. [Online]. Available: https://www.nature.com/articles/s41467-018-07328-1
  24. S. Chowdhury, A. Grimaldi, N. A. Aadit, S. Niazi, M. Mohseni, S. Kanai, H. Ohno, S. Fukami, L. Theogarajan, G. Finocchio et al., “A full-stack view of probabilistic computing with p-bits: devices, architectures and algorithms,” IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2023. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10068500
  25. M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, and H. Mizuno, “A 20k-spin ising chip to solve combinatorial optimization problems with cmos annealing,” IEEE Journal of Solid-State Circuits, vol. 51, no. 1, pp. 303–309, 2015. [Online]. Available: https://ieeexplore.ieee.org/document/7350099
  26. T. Takemoto, M. Hayashi, C. Yoshimura, and M. Yamaoka, “A 2 × 30k-spin multi-chip scalable cmos annealing processor based on a processing-in-memory approach for solving large-scale combinatorial optimization problems,” IEEE Journal of Solid-State Circuits, no. 1, p. 55, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8906059
  27. K. Yamamoto, K. Kawamura, K. Ando, N. Mertig, T. Takemoto, M. Yamaoka, H. Teramoto, A. Sakai, S. Takamaeda-Yamazaki, and M. Motomura, “Statica: A 512-spin 0.25 m-weight annealing processor with an all-spin-updates-at-once architecture for combinatorial optimization with complete spin–spin interactions,” IEEE Journal of Solid-State Circuits, vol. 56, no. 1, pp. 165–178, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/9222223
  28. M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, and H. Mizuno, “24.3 20k-spin ising chip for combinational optimization problem with cmos annealing,” in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers.   IEEE, 2015, pp. 1–3. [Online]. Available: https://ieeexplore.ieee.org/document/7063111
  29. N. A. Aadit, A. Grimaldi, M. Carpentieri, L. Theogarajan, J. M. Martinis, G. Finocchio, and K. Y. Camsari, “Massively parallel probabilistic computing with sparse ising machines,” Nature Electronics, vol. 5, no. 7, pp. 460–468, 2022. [Online]. Available: https://www.nature.com/articles/s41928-022-00774-2
  30. Y. Haribara, S. Utsunomiya, and Y. Yamamoto, “A coherent ising machine for max-cut problems: performance evaluation against semidefinite programming and simulated annealing,” Principles and Methods of Quantum Information Technologies, pp. 251–262, 2016. [Online]. Available: https://link.springer.com/chapter/10.1007/978-4-431-55756-2_12
  31. F. Rendl, G. Rinaldi, and A. Wiegele, “A branch and bound algorithm for max-cut based on combining semidefinite and polyhedral relaxations,” in Integer Programming and Combinatorial Optimization: 12th International IPCO Conference, Ithaca, NY, USA, June 25-27, 2007. Proceedings 12.   Springer, 2007, pp. 295–309. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-540-72792-7_23
  32. M. T. Veszeli and G. Vattay, “Mean field approximation for solving qubo problems,” Plos one, vol. 17, no. 8, p. e0273709, 2022. [Online]. Available: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0273709
  33. J. Bowles, A. Dauphin, P. Huembeli, J. Martinez, and A. Acín, “Quadratic unconstrained binary optimization via quantum-inspired annealing,” Physical Review Applied, vol. 18, no. 3, p. 034016, 2022. [Online]. Available: https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.18.034016
  34. L. Li, H. Wang, Z. Xie, Z. Liu, W. Cui, and Y. Pan, “Simulated ising annealing algorithm with gaussian augmented hamiltonian monte carlo,” in 2023 42nd Chinese Control Conference (CCC).   IEEE, 2023, pp. 6760–6765. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10240679
  35. A. Bulut and T. K. Ralphs, “On the complexity of inverse mixed integer linear optimization,” SIAM Journal on Optimization, vol. 31, no. 4, pp. 3014–3043, 2021. [Online]. Available: https://epubs.siam.org/doi/abs/10.1137/20M1377369
  36. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014. [Online]. Available: https://arxiv.org/abs/1412.6980
  37. J. King, S. Yarkoni, M. M. Nevisi, J. P. Hilton, and C. C. McGeoch, “Benchmarking a quantum annealing processor with the time-to-target metric,” arXiv preprint arXiv:1508.05087, 2015. [Online]. Available: https://arxiv.org/abs/1508.05087
  38. R. Hamerly, T. Inagaki, P. L. McMahon, D. Venturelli, A. Marandi, T. Onodera, E. Ng, C. Langrock, K. Inaba, T. Honjo et al., “Experimental investigation of performance differences between coherent ising machines and a quantum annealer,” Science advances, vol. 5, no. 5, p. eaau0823, 2019. [Online]. Available: https://www.science.org/doi/10.1126/sciadv.aau0823
  39. H. Oshiyama and M. Ohzeki, “Benchmark of quantum-inspired heuristic solvers for quadratic unconstrained binary optimization,” Scientific reports, vol. 12, no. 1, p. 2146, 2022. [Online]. Available: https://www.nature.com/articles/s41598-022-06070-5

Summary

We haven't generated a summary for this paper yet.