Fast Numerical Solver of Ising Optimization Problems via Pruning and Domain Selection (2312.05837v2)
Abstract: Quantum annealers, coherent Ising machines and digital Ising machines for solving quantum-inspired optimization problems have been developing rapidly due to their near-term applications. The numerical solvers of the digital Ising machines are based on traditional computing devices. In this work, we propose a fast and efficient solver for the Ising optimization problems. The algorithm consists of a pruning method that exploits the graph information of the Ising model to reduce the computational complexity, and a domain selection method which introduces significant acceleration by relaxing the discrete feasible domain into a continuous one to incorporate the efficient gradient descent method. The experiment results show that our solver can be an order of magnitude faster than the classical solver, and at least two times faster than the quantum-inspired annealers including the simulated quantum annealing on the benchmark problems. With more relaxed requirements on hardware and lower cost than quantum annealing, the proposed solver has the potential for near-term application in solving challenging optimization problems as well as serving as a benchmark for evaluating the advantage of quantum devices.
- E. Ising, “Contribution to the theory of ferromagnetism,” Z. Phys, vol. 31, no. 1, pp. 253–258, 1925.
- J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum, vol. 2, p. 79, 2018. [Online]. Available: https://quantum-journal.org/papers/q-2018-08-06-79/?fbclid=IwAR0FRb9N2fas7ETWu2M40OS6prXB5QvFME_WRELpm2CAUcccVIEzA_UmLn4
- A. Lucas, “Ising formulations of many np problems,” Frontiers in physics, vol. 2, p. 5, 2014. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fphy.2014.00005/full?ref=https://githubhelp.com
- P. McMahon, “To solve optimization problems, just add lasers: An odd device known as an optical ising machine could untangle tricky logistics,” IEEE Spectrum, vol. 55, no. 12, pp. 42–47, 2018. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8544983
- S. J. Weinberg, F. Sanches, T. Ide, K. Kamiya, and R. Correll, “Supply chain logistics with quantum and classical annealing algorithms,” Scientific Reports, vol. 13, no. 1, p. 4770, 2023. [Online]. Available: https://www.nature.com/articles/s41598-023-31765-8
- S. Bao, M. Tawada, S. Tanaka, and N. Togawa, “Multi-day travel planning using ising machines for real-world applications,” in 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). IEEE, 2021, pp. 3704–3709. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9564593
- Z. Pan, A. Sharma, J. Y.-C. Hu, Z. Liu, A. Li, H. Liu, M. Huang, and T. Geng, “Ising-traffic: Using ising machine learning to predict traffic congestion under uncertainty,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 8, 2023, pp. 9354–9363. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/26121
- H. Hussain, M. B. Javaid, F. S. Khan, A. Dalal, and A. Khalique, “Optimal control of traffic signals using quantum annealing,” Quantum Information Processing, vol. 19, pp. 1–18, 2020. [Online]. Available: https://link.springer.com/article/10.1007/s11128-020-02815-1
- D. Inoue, A. Okada, T. Matsumori, K. Aihara, and H. Yoshida, “Traffic signal optimization on a square lattice with quantum annealing,” Scientific reports, vol. 11, no. 1, p. 3303, 2021. [Online]. Available: https://www.nature.com/articles/s41598-021-82740-0
- D. Venturelli, S. Mandrà, S. Knysh, B. O’Gorman, R. Biswas, and V. Smelyanskiy, “Quantum optimization of fully connected spin glasses,” Physical Review X, vol. 5, no. 3, p. 031040, 2015. [Online]. Available: https://journals.aps.org/prx/abstract/10.1103/PhysRevX.5.031040
- M. Parizy, P. Sadowski, and N. Togawa, “Cardinality constrained portfolio optimization on an ising machine,” in 2022 IEEE 35th International System-on-Chip Conference (SOCC). IEEE, 2022, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9908082
- D. Venturelli and A. Kondratyev, “Reverse quantum annealing approach to portfolio optimization problems,” Quantum Machine Intelligence, vol. 1, no. 1-2, pp. 17–30, 2019. [Online]. Available: https://link.springer.com/article/10.1007/s42484-019-00001-w
- M. Benedetti, J. Realpe-Gómez, R. Biswas, and A. Perdomo-Ortiz, “Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning,” Physical Review A, vol. 94, no. 2, p. 022308, 2016. [Online]. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.022308
- F. Böhm, D. Alonso-Urquijo, G. Verschaffelt, and G. Van der Sande, “Noise-injected analog ising machines enable ultrafast statistical sampling and machine learning,” Nature Communications, vol. 13, no. 1, p. 5847, 2022. [Online]. Available: https://www.nature.com/articles/s41467-022-33441-3
- E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, “A quantum adiabatic evolution algorithm applied to random instances of an np-complete problem,” Science, vol. 292, no. 5516, pp. 472–475, 2001. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.1057726
- M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk et al., “Quantum annealing with manufactured spins,” Nature, vol. 473, no. 7346, pp. 194–198, 2011. [Online]. Available: https://www.nature.com/articles/nature10012
- T. Albash and D. A. Lidar, “Adiabatic quantum computation,” Reviews of Modern Physics, vol. 90, no. 1, p. 015002, 2018. [Online]. Available: https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.90.015002
- Z. Wang, A. Marandi, K. Wen, R. L. Byer, and Y. Yamamoto, “Coherent ising machine based on degenerate optical parametric oscillators,” Physical Review A, vol. 88, no. 6, p. 063853, 2013. [Online]. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.88.063853
- T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate, T. Honjo, A. Marandi, P. L. McMahon, T. Umeki, K. Enbutsu et al., “A coherent ising machine for 2000-node optimization problems,” Science, vol. 354, no. 6312, pp. 603–606, 2016. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.aah4243
- V. Dunjko, J. M. Taylor, and H. J. Briegel, “Quantum-enhanced machine learning,” Physical review letters, vol. 117, no. 13, p. 130501, 2016. [Online]. Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.130501
- M. Ohzeki, “Breaking limitation of quantum annealer in solving optimization problems under constraints,” Scientific reports, vol. 10, no. 1, p. 3126, 2020. [Online]. Available: https://www.nature.com/articles/s41598-020-60022-5/
- S. Okada, M. Ohzeki, M. Terabe, and S. Taguchi, “Improving solutions by embedding larger subproblems in a d-wave quantum annealer,” Scientific reports, vol. 9, no. 1, p. 2098, 2019. [Online]. Available: https://www.nature.com/articles/s41598-018-38388-4
- F. Böhm, T. Inagaki, K. Inaba, T. Honjo, K. Enbutsu, T. Umeki, R. Kasahara, and H. Takesue, “Understanding dynamics of coherent ising machines through simulation of large-scale 2d ising models,” Nature communications, vol. 9, no. 1, p. 5020, 2018. [Online]. Available: https://www.nature.com/articles/s41467-018-07328-1
- S. Chowdhury, A. Grimaldi, N. A. Aadit, S. Niazi, M. Mohseni, S. Kanai, H. Ohno, S. Fukami, L. Theogarajan, G. Finocchio et al., “A full-stack view of probabilistic computing with p-bits: devices, architectures and algorithms,” IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2023. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10068500
- M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, and H. Mizuno, “A 20k-spin ising chip to solve combinatorial optimization problems with cmos annealing,” IEEE Journal of Solid-State Circuits, vol. 51, no. 1, pp. 303–309, 2015. [Online]. Available: https://ieeexplore.ieee.org/document/7350099
- T. Takemoto, M. Hayashi, C. Yoshimura, and M. Yamaoka, “A 2 × 30k-spin multi-chip scalable cmos annealing processor based on a processing-in-memory approach for solving large-scale combinatorial optimization problems,” IEEE Journal of Solid-State Circuits, no. 1, p. 55, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8906059
- K. Yamamoto, K. Kawamura, K. Ando, N. Mertig, T. Takemoto, M. Yamaoka, H. Teramoto, A. Sakai, S. Takamaeda-Yamazaki, and M. Motomura, “Statica: A 512-spin 0.25 m-weight annealing processor with an all-spin-updates-at-once architecture for combinatorial optimization with complete spin–spin interactions,” IEEE Journal of Solid-State Circuits, vol. 56, no. 1, pp. 165–178, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/9222223
- M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, and H. Mizuno, “24.3 20k-spin ising chip for combinational optimization problem with cmos annealing,” in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers. IEEE, 2015, pp. 1–3. [Online]. Available: https://ieeexplore.ieee.org/document/7063111
- N. A. Aadit, A. Grimaldi, M. Carpentieri, L. Theogarajan, J. M. Martinis, G. Finocchio, and K. Y. Camsari, “Massively parallel probabilistic computing with sparse ising machines,” Nature Electronics, vol. 5, no. 7, pp. 460–468, 2022. [Online]. Available: https://www.nature.com/articles/s41928-022-00774-2
- Y. Haribara, S. Utsunomiya, and Y. Yamamoto, “A coherent ising machine for max-cut problems: performance evaluation against semidefinite programming and simulated annealing,” Principles and Methods of Quantum Information Technologies, pp. 251–262, 2016. [Online]. Available: https://link.springer.com/chapter/10.1007/978-4-431-55756-2_12
- F. Rendl, G. Rinaldi, and A. Wiegele, “A branch and bound algorithm for max-cut based on combining semidefinite and polyhedral relaxations,” in Integer Programming and Combinatorial Optimization: 12th International IPCO Conference, Ithaca, NY, USA, June 25-27, 2007. Proceedings 12. Springer, 2007, pp. 295–309. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-540-72792-7_23
- M. T. Veszeli and G. Vattay, “Mean field approximation for solving qubo problems,” Plos one, vol. 17, no. 8, p. e0273709, 2022. [Online]. Available: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0273709
- J. Bowles, A. Dauphin, P. Huembeli, J. Martinez, and A. Acín, “Quadratic unconstrained binary optimization via quantum-inspired annealing,” Physical Review Applied, vol. 18, no. 3, p. 034016, 2022. [Online]. Available: https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.18.034016
- L. Li, H. Wang, Z. Xie, Z. Liu, W. Cui, and Y. Pan, “Simulated ising annealing algorithm with gaussian augmented hamiltonian monte carlo,” in 2023 42nd Chinese Control Conference (CCC). IEEE, 2023, pp. 6760–6765. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10240679
- A. Bulut and T. K. Ralphs, “On the complexity of inverse mixed integer linear optimization,” SIAM Journal on Optimization, vol. 31, no. 4, pp. 3014–3043, 2021. [Online]. Available: https://epubs.siam.org/doi/abs/10.1137/20M1377369
- D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014. [Online]. Available: https://arxiv.org/abs/1412.6980
- J. King, S. Yarkoni, M. M. Nevisi, J. P. Hilton, and C. C. McGeoch, “Benchmarking a quantum annealing processor with the time-to-target metric,” arXiv preprint arXiv:1508.05087, 2015. [Online]. Available: https://arxiv.org/abs/1508.05087
- R. Hamerly, T. Inagaki, P. L. McMahon, D. Venturelli, A. Marandi, T. Onodera, E. Ng, C. Langrock, K. Inaba, T. Honjo et al., “Experimental investigation of performance differences between coherent ising machines and a quantum annealer,” Science advances, vol. 5, no. 5, p. eaau0823, 2019. [Online]. Available: https://www.science.org/doi/10.1126/sciadv.aau0823
- H. Oshiyama and M. Ohzeki, “Benchmark of quantum-inspired heuristic solvers for quadratic unconstrained binary optimization,” Scientific reports, vol. 12, no. 1, p. 2146, 2022. [Online]. Available: https://www.nature.com/articles/s41598-022-06070-5