Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fractional Dissipative PDEs (2312.05606v1)

Published 9 Dec 2023 in math.AP, cs.NA, math.DS, math.NA, and nlin.PS

Abstract: In this chapter we provide an introduction to fractional dissipative partial differential equations (PDEs) with a focus on trying to understand their dynamics. The class of PDEs we focus on are reaction-diffusion equations but we also provide an outlook on closely related classes of PDEs. To simplify the exposition, we only discuss the cases of fractional time derivatives and fractional space derivatives in the PDE separately. As our main tools, we describe analytical as well as numerical methods, which are generically necessary to study nonlinear dynamics. We start with the analytical study of steady states and local linear stability for fractional time derivatives. Then we extend this view to a global perspective and consider time-fractional PDEs and gradient flows. Next, we continue to steady states, linear stability analysis and bifurcations for space-fractional PDEs. As a final analytical consideration we discuss existence and stability of traveling waves for space-fractional PDEs. In the last parts, we provide numerical discretization schemes for fractional (dissipative) PDEs and we utilize these techniques within numerical continuation in applied examples of fractional reaction-diffusion PDEs. We conclude with a brief summary and outlook on open questions in the field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (242)
  1. N.F. Britton. Reaction-Diffusion Equations and Their Applications to Biology. Academic Press, 1986.
  2. P. Grindrod. Patterns and Waves: The Theory and Applications of Reaction-Diffusion Equations. Clarendon Press, 1991.
  3. J.D. Murray. Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, 3rd edition, 2003.
  4. H. Amann. Linear and Quasilinear Parabolic Problems: Volume I: Abstract Linear Theory. Springer, 1995.
  5. L.C. Evans. Partial Differential Equations. AMS, 2002.
  6. A. Lunardi. Analytic Semigroups and Optimal Regularity in Parabolic Problems. Springer, 1995.
  7. F. Rothe. Global Solutions of Reaction-Diffusion Systems. Springer, 1984.
  8. J. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer, 1994.
  9. J.C. Robinson. Infinite-Dimensional Dynamical Systems. CUP, 2001.
  10. R. Temam. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, 1997.
  11. D. Henry. Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin Heidelberg, Germany, 1981.
  12. C. Kuehn. PDE Dynamics: An Introduction. SIAM, 2019.
  13. G. Schneider and H. Uecker. Nonlinear PDEs: A Dynamical Systems Approach. AMS, 2017.
  14. Methods of Bifurcation Theory. Springer, 1982.
  15. H. Kielhoefer. Bifurcation Theory: An Introduction with Applications to PDEs. Springer, 2004.
  16. Yu.A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, New York, NY, 3rd edition, 2004.
  17. E. Zeidler. Nonlinear Functional Analysis and its Applications III: Variational Methods and Optimization. Springer, 2013.
  18. T. Kato. Perturbation Theory for Linear Operators. Springer, 1980.
  19. T. Kapitula and K. Promislow. Spectral and Dynamical Stability of Nonlinear Waves. Springer, 2013.
  20. B. Sandstede. Stability of travelling waves. In B. Fiedler, editor, Handbook of Dynamical Systems, volume 2, pages 983–1055. Elsevier, 2001.
  21. H. Dankowicz and F. Schilder. Recipes for Continuation. SIAM, 2013.
  22. Auto 2007p: Continuation and bifurcation software for ordinary differential equations (with homcont). http://cmvl.cs.concordia.ca/auto, 2007.
  23. pde2path - a Matlab package for continuation and bifurcation in 2D elliptic systems. Numerical Mathematics: Theory, Methods and Applications, 7(1):58–106, 2014.
  24. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica, 27(6):1085–1905, 1979.
  25. N. Chafee and E.F. Infante. A bifurcation problem for a nonlinear partial differential equation of parabolic type. Applic. Anal., 4(1):17–37, 1974.
  26. An active pulse transmission line simulating nerve axon. Proc. IRE, 50:2061–2070, 1962.
  27. Pattern formation outside of equilibrium. Rev. Mod. Phys., 65(3):851–1112, 1993.
  28. F. Schlögl. Chemical reaction models for non-equilibrium phase transitions. Zeitschrift für Physik, 253(2):147–161, 1972.
  29. M. Hairer. Regularity structures and the dynamical Φ34subscriptsuperscriptΦ43\Phi^{4}_{3}roman_Φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT model. arXiv:1508.05261, pages 1–46, 2015.
  30. The validity of modulation equations for extended systems with cubic nonlinearities. Proc. R. Soc. Edinburgh A, 122(1):85–91, 1992.
  31. B. Fiedler and C. Rocha. Heteroclinic orbits of semilinear parabolic equations. J. Differen. Equat., 125(1):239–281, 1996.
  32. Spatio-temporal dynamics of reaction-diffusion patterns. In Trends in nonlinear analysis, pages 23–152. Springer, Berlin, 2003.
  33. B. Sandstede. Stability of N𝑁Nitalic_N-fronts bifurcating from a twisted heteroclinic loop and an application to the FitzHugh-Nagumo equation. SIAM J. Math. Anal., 29(1):183–207, 1998.
  34. W.J. Beyn and V. Thümmler. Freezing solutions of equivariant evolution equations. SIAM J. Appl. Dyn. Syst., 3(2):85–116, 2004.
  35. R. Metzler and J. Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339(1):1–77, 2000.
  36. Fractional integrals and derivatives. Gordon and Breach Science Publishers, Yverdon, 1993. Theory and applications, Edited and with a foreword by S. M. Nikol’skiUı, Translated from the 1987 Russian original, Revised by the authors.
  37. Fractional dispersion, Lévy motion, and the MADE tracer tests. Transp. Porous Media, 42(1-2):211–240, 2001.
  38. D. Del Castillo-Negrete. Asymmetric transport and non-Gaussian statistics of passive scalars in vortices in shear. Physics of Fluids, 10(3):576, 1998.
  39. Fractional diffusion in plasma turbulence. Physics of Plasmas, 11(8):3854–3864, 07 2004.
  40. Front dynamics in fractional-order epidemic models. Journal of theoretical biology, 279(1):9–16, June 2011.
  41. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys., 16:24128–24164, 2014.
  42. Anomalous transport : foundations and applications. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2008.
  43. Fractional advection-dispersion equations for modeling transport at the earth surface. Journal of Geophysical Research: Earth Surface, 114(F4), 2009.
  44. Numerical methods for nonlocal and fractional models. Acta Numer., 29:1–124, 2020.
  45. Reaction-transport systems. Springer Series in Synergetics. Springer, Heidelberg, 2010. Mesoscopic foundations, fronts, and spatial instabilities.
  46. K. Sato. Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. Translated from the 1990 Japanese original, Revised by the author.
  47. Non-symmetric stable operators: regularity theory and integration by parts. Adv. Math., 401:Paper No. 108321, 100, 2022.
  48. Mateusz Kwaśnicki. Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal., 20(1):7–51, 2017.
  49. William McLean. Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge, 2000.
  50. Kai Diethelm. The analysis of fractional differential equations, volume 2004 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2010. An application-oriented exposition using differential operators of Caputo type.
  51. Stochastic Foundations in Movement Ecology: Anomalous Diffusion, Front Propagation and Random Searches. Springer Series in Synergetics. Springer-Verlag Berlin Heidelberg, 1st edition, 2014.
  52. Bangti Jin. Fractional differential equations—an approach via fractional derivatives, volume 206 of Applied Mathematical Sciences. Springer, Cham, 2021.
  53. I. M. Sokolov and J. Klafter. From diffusion to anomalous diffusion: A century after Einstein’s Brownian motion. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15(2):026103, 06 2005.
  54. Rico Zacher. Time fractional diffusion equations: solution concepts, regularity, and long-time behavior. In Anatoly Kochubei and Yuri Luchko, editors, Volume 2 Fractional Differential Equations, pages 159–180. De Gruyter, Berlin, Boston, 2019.
  55. W. R. Schneider and W. Wyss. Fractional diffusion and wave equations. Journal of Mathematical Physics, 30(1):134–144, 01 1989.
  56. Sub-diffusion equations of fractional order and their fundamental solutions. In K. Taş, J. A. Tenreiro Machado, and D. Baleanu, editors, Mathematical Methods in Engineering, pages 23–55. Springer Netherlands, Dordrecht, 2007.
  57. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. Journal of Physics A: Mathematical and General, 37(31):R161–R208, 2004.
  58. Denis Matignon. Stability results for fractional differential equations with applications to control processing. In Computational engineering in systems applications, volume 2, pages 963–968. 1996.
  59. Stability of systems of fractional-order differential equations with Caputo derivatives. Mathematics, 9(8), 2021.
  60. The fundamental solution of the space-time fractional diffusion equation. Fractional Calculus and Applied Analysis, 4(2):153–192, 2001.
  61. Theory and Applications of Fractional Differential Equations, volume 204 of North-Holland Mathematics Studies. Elsevier Science, Amsterdam, 1st edition, 2006.
  62. A. N. Kochubei. Diffusion of fractional order. Differential Equations, 26(4):485–492, 1990.
  63. Cauchy problem for fractional diffusion equations. Journal of Differential Equations, 199(2):211–255, 2004.
  64. Jichen Yang and Jens D. M. Rademacher. Reaction-subdiffusion systems and memory: spectra, Turing instability and decay estimates. IMA J. Appl. Math., 86(2):247–293, 2021.
  65. Well-posedness of time-fractional advection-diffusion-reaction equations. Fract. Calc. Appl. Anal., 22(4):918–944, 2019.
  66. Wright functions as scale-invariant solutions of the diffusion-wave equation. Journal of Computational and Applied Mathematics, 118(1):175–191, 2000.
  67. The M-Wright function in time-fractional diffusion processes: a tutorial survey. International Journal of Differential Equations, 2010:1–29, 2010.
  68. Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods. SIAM Journal on Mathematical Analysis, 47(1):210–239, 2015.
  69. Decay estimates for time-fractional and other non-local in time subdiffusion equations in ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. Math. Ann., 366(3-4):941–979, 2016.
  70. Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations. Physical Review E, 74(3):031116, 2006.
  71. Fractional reaction-diffusion equation. The Journal of chemical physics, 119(4):2165–2170, 2003.
  72. Recombination kinetics in subdiffusive media. The Journal of chemical physics, 119(14):7525–7533, 2003.
  73. Reaction front in an A + B →→\to→ C reaction-subdiffusion process. Physical Review E, 69(3):036126, 2004.
  74. Turing pattern formation with fractional diffusion and fractional reactions. Journal of Physics: Condensed Matter, 19(6):065115, 2007.
  75. Y. Nec and A. A. Nepomnyashchy. Turing instability of anomalous reaction–anomalous diffusion systems. European Journal of Applied Mathematics, 19(3):329–349, 2008.
  76. V. Vergara and R. Zacher. Stability, instability, and blowup for time fractional and other nonlocal in time semilinear subdiffusion equations. J. Evol. Equ., 17:599–626, 2017.
  77. Regularity and stability analysis for a class of semilinear nonlocal differential equations in Hilbert spaces. Journal of Mathematical Analysis and Applications, 483(2):123655, 2020.
  78. On stability and regularity for semilinear anomalous diffusion equations perturbed by weak-valued nonlinearities. Discrete and Continuous Dynamical Systems - S, pages 1–19, 2023.
  79. Stability analysis for nonlocal evolution equations involving infinite delays. J. Fixed Point Theory Appl., 25(1):Paper No. 22, 33, 2023.
  80. The effect of subdiffusion on the stability of autocatalytic systems. Chemical Engineering Science, 265:118230, 2023.
  81. Fractional reaction–diffusion. Physica A: Statistical Mechanics and its Applications, 276(3):448–455, 2000.
  82. Sergei Fedotov. Non-markovian random walks and nonlinear reactions: Subdiffusion and propagating fronts. Physical Review E, 81(1):011117, 2010.
  83. Y. Nec and A. A. Nepomnyashchy. Linear stability of fractional reaction-diffusion systems. Mathematical Modelling of Natural Phenomena, 2(2):77–105, 2007.
  84. A. A. Nepomnyashchy. Mathematical modelling of subdiffusion-reaction systems. Mathematical Modelling of Natural Phenomena, 11(1):26–36, 2016.
  85. Existence of Turing instabilities in a two-species fractional reaction-diffusion system. SIAM Journal on Applied Mathematics, 62(3):870–887, 2002.
  86. Anomalous subdiffusion with multispecies linear reaction dynamics. Physical Review E, 77(2):021111, 2008.
  87. Reaction-subdiffusion equations with species-dependent movement. SIAM J. Appl. Math., 81(6):2457–2479, 2021.
  88. Björn Sandstede. Chapter 18 - stability of travelling waves. In Bernold Fiedler, editor, Handbook of Dynamical Systems, volume 2 of Handbook of Dynamical Systems, pages 983 – 1055. Elsevier Science, 2002.
  89. Turing pattern formation in fractional activator-inhibitor systems. Physical Review E, 72(2):026101, 2005.
  90. Y. Kōmura. Nonlinear semi-groups in Hilbert space. J. Math. Soc. Japan, 19:493–507, 1967.
  91. Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math., 93:265–298, 1971.
  92. H. Brézis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, volume No. 5 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. Notas de Matemática, No. 50. [Mathematical Notes].
  93. V. Barbu. Nonlinear Volterra equations in a Hilbert space. SIAM J. Math. Anal., 6:728–741, 1975.
  94. V. Barbu. On a nonlinear Volterra integral equation on a Hilbert space. SIAM J. Math. Anal., 8:346–355, 1977.
  95. V. Barbu. Existence for nonlinear Volterra equations in Hilbert spaces. SIAM J. Math. Anal., pages 552–569, 1979.
  96. An abstract functional differential equation and a related nonlinear Volterra equation. Israel J. Math., 29:313–328, 1978.
  97. G. Gripenberg. An existence result for a nonlinear Volterra integral equation in a Hilbert space. SIAM J. Math. Anal., 9:793–805, 1978.
  98. A note on Volterra equations in a Hilbert space. Proc. Amer. Math. Soc., 70:57–62, 1978.
  99. T. Kiffe and M. Stecher. An abstract Volterra integral equation in a reflexive Banach space. J. Differential Equations, 34:303–325, 1979.
  100. Ph. Clément. On abstract Volterra equations with kernels having a positive resolvent. Israel J. Math., 36:193–200, 1980.
  101. S. Aizicovici. An abstract doubly nonlinear Volterra integral equation. Funkcialaj Ekvacioj, 36:479–497, 1993.
  102. Asymptotic behavior of solutions of nonlinear volterra equations with completely positive kernels. SIAM J. Math. Anal., 12:514–535, 1981.
  103. Abstract linear and nonlinear Volterra equations preserving positivity. SIAM J. Math. Anal., 10:365–388, 1979.
  104. G. Gripenberg. An abstract nonlinear volterra equation. Israel J. Math., 34:198–212, 1979.
  105. T. Kiffe. A perturbation of an abstract Volterra equation. SIAM J. Math. Anal., 11:1036–1046, 1980.
  106. Ph. Clément. On abstract Volterra equations in Banach spaces with completely positive kernels, volume 1076 of Lecture Notes in Math., pages 32–40. Springer, Berlin, 1984.
  107. G. Gripenberg. Volterra integro-differential equations with accretive nonlinearity. J. Differential Equations, 60:57–79, 1985.
  108. Ph. Clément and J. Prüss. Completely positive measures and Feller semigroups. Math. Ann., 287:73–105, 1990.
  109. R. Zacher. Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces. Funkcial.  Ekvac., 52:1–18, 2009.
  110. V. Vergara and R. Zacher. Lyapunov functions and convergence to steady state for differential equations of fractional order. Math. Z., 259:287–309, 2008.
  111. R. Zacher. Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients. J. Math. Anal. Appl., 348:137–149, 2008.
  112. R. Zacher. A De Giorgi–Nash type theorem for time fractional diffusion equations. Math. Ann., 356:99–146, 2013.
  113. V. Vergara and R. Zacher. A priori bounds for degenerate and singular evolutionary partial integro-differential equations. Nonlinear Anal., 73:3572–3585, 2010.
  114. R. Zacher. A weak Harnack inequality for fractional evolution equations with discontinuous coefficients. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12:903–940, 2013.
  115. E. Affili and E. Valdinoci. Decay estimates for evolution equations with classical and fractional time-derivatives. J. Differential Equations, 266:4027–4060, 2019.
  116. R. Zacher. Time fractional diffusion equations: solution concepts, regularity, and long-time behavior, volume 2, pages 159–179. De Gruyter, Berlin, 2019.
  117. R. Zacher. Maximal regularity of type lpsubscript𝑙𝑝l_{p}italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT for abstract parabolic Volterra equations. J. Evol. Equ., 5:79–103, 2005.
  118. R. Zacher. Quasilinear parabolic integro-differential equations with nonlinear boundary conditions. Differential Integral Equations, 19:1129–1156, 2006.
  119. C.G. Gal and M. Warma. Fractional-in-time semilinear parabolic equations and applications, volume 84 of Mathematics & Applications. Springer, Cham, 2020.
  120. Time-fractional differential equations—a theoretical introduction. Springer Briefs Math. Springer, Singapore, 2020.
  121. G. Akagi. Fractional flows driven by subdifferentials in Hilbert spaces. Israel J. Math., 234:809–862, 2019.
  122. C.O. Alves and T. Boudjeriou. Existence and uniqueness of solution for some time fractional parabolic equations involving the 1-Laplace operator. Partial Differential Equations and Applications, 4, 2023.
  123. Bounded weak solutions of time-fractional porous medium type and more general nonlinear and degenerate evolutionary integro-differential equations. J. Math. Anal. Appl., 499:20 pp, 2021.
  124. Regularity of radial extremal solutions for some non-local semilinear equations. Communications in Partial Differential Equations, 36(8):1353–1384, 2011.
  125. Getting acquainted with the fractional Laplacian. Contemporary research in elliptic PDEs and related topics, pages 1–105, 2019.
  126. R. Servadei and E. Valdinoci. On the spectrum of two different fractional operators. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 144(4):831–855, 2014.
  127. Nonlocal diffusion and applications, volume 20. Springer, 2016.
  128. A comparative study on nonlocal diffusion operators related to the fractional Laplacian. Discrete & Continuous Dynamical Systems-Series B, 24(1), 2019.
  129. On fractional laplacians. Communications in partial differential equations, 39(9):1780–1790, 2014.
  130. Modelling and formation of spatiotemporal patterns of fractional predation system in subdiffusion and superdiffusion scenarios. The European physical Journal Plus, 133:1–13, 2018.
  131. Canrong Tian. Turing pattern formation in a semiarid vegetation model with fractional-in-space diffusion. Bulletin of mathematical biology, 77:2072–2085, 2015.
  132. L.W. Somathilake and K. Burrage. A space-fractional-reaction-diffusion model for pattern formation in coral reefs. Cogent Mathematics & Statistics, 5(1):1426524, 2018.
  133. Turing pattern formation in the Brusselator model with superdiffusion. SIAM Journal on Applied Mathematics, 69(1):251–272, 2008.
  134. Turing pattern dynamics in an activator-inhibitor system with superdiffusion. Physical Review E, 90(6):062915, 2014.
  135. J. Schnakenberg. Simple chemical reaction systems with limit cycle behaviour. Journal of Theoretical Biology, 81(3):389–400, 1979.
  136. The singular limit of the Allen–Cahn equation and the FitzHugh–Nagumo system. Journal of Differential Equations, 245(2):505–565, 2008.
  137. Stationary layered solutions in ℝ2superscriptℝ2\mathbb{R}^{2}blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT for an Allen–Cahn system with multiple well potential. Calculus of Variations and Partial Differential Equations, 5(4):359–390, 1997.
  138. Mixed states for an Allen–Cahn type equation. Communications on Pure and Applied Mathematics, 56(8):1078–1134, 2003.
  139. M.J. Ward. Metastable bubble solutions for the Allen–Cahn equation with mass conservation. SIAM Journal on Applied Mathematics, 56(5):1247–1279, 1996.
  140. I. S Aranson and L. Kramer. The world of the complex Ginzburg–Landau equation. Reviews of Modern Physics, 74(1):99–143, 2002.
  141. A. Mielke. The Ginzburg–Landau equation in its role as a modulation equation. In Handbook of Dynamical Systems, volume 2, pages 759–834. Elsevier, 2002.
  142. G. Schneider. The validity of generalized Ginzburg–Landau equations. Mathematical Methods in the Applied Sciences, 19(9):717–736, 1996.
  143. T. Kapitula and B. Sandstede. Instability mechanism for bright solitary-wave solutions to the cubic–quintic Ginzburg–Landau equation. Journal of the Optical Society of America B, 15(11):2757–2762, 1998.
  144. C. Kuehn. Numerical continuation and SPDE stability for the 2D cubic–quintic Allen–Cahn equation. SIAM/ASA Journal on Uncertainty Quantification, 3(1):762–789, 2015.
  145. Metastable speeds in the fractional Allen-Cahn equation. Appl. Math. Comput., 408:Paper No. 126329, 18, 2021.
  146. Fractional Cahn–Hilliard, Allen–Cahn and porous medium equations. Journal of Differential Equations, 261(6):2935–2985, 2016.
  147. Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numerical mathematics, 54(4):937–954, 2014.
  148. Numerical continuation for fractional pdes: sharp teeth and bloated snakes. Communications in Nonlinear Science and Numerical Simulation, 98:105762, 2021.
  149. J. Swift and P.C. Hohenberg. Hydrodynamic fluctuations at the convective instability. Physical Review A, 15(1):319, 1977.
  150. G. Schneider. Diffusive stability of spatial periodic solutions of the Swift–Hohenberg equation. Communications in Mathematical Physics, 178(3):679–702, 1996.
  151. Localized states in the conserved Swift–Hohenberg equation with cubic nonlinearity. Physical Review E, 87(4):042915, 2013.
  152. P. Collet and J.P. Eckmann. The time dependent amplitude equation for the Swift–Hohenberg problem. Communications in Mathematical Physics, 132(1):139–153, 1990.
  153. A. van Harten. On the validity of the Ginzburg–Landau equation. Journal of Nonlinear Science, 1(4):397–422, 1991.
  154. C. Kuehn and S. Throm. Validity of amplitude equations for non-local non-linearities. Journal of Mathematical Physics, 59:071510, 2018.
  155. D. Morgan and J.H.P. Dawes. The Swift–Hohenberg equation with a nonlocal nonlinearity. Physica D, 270:60–80, 2014.
  156. H. Uecker and D. Wetzel. Numerical results for snaking of patterns over patterns in some 2D Selkov–Schnakenberg reaction-diffusion systems. SIAM Journal on Applied Dynamical Systems, 13(1):94–128, 2014.
  157. Fronts in anomalous diffusion-reaction systems. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371(1982):20120179, 18, 2013.
  158. Front propagation problems with sub-diffusion. Discrete Contin. Dyn. Syst., 27(2):827–846, 2010.
  159. Hiroshi Ishii. Propagating front solutions in a time-fractional fisher-kpp equation, 2023.
  160. Travelling waves for a non-local Korteweg–de Vries–Burgers equation. J. Differential Equations, 257(3):720–758, 2014.
  161. C. M. Cuesta and F. Achleitner. Addendum to “Travelling waves for a non-local Korteweg–de Vries-Burgers equation” [J. Differential Equations 257 (3) (2014) 720–758] [MR3208089]. J. Differential Equations, 262(2):1155–1160, 2017.
  162. Traveling waves for a bistable equation with nonlocal diffusion. Adv. Differential Equations, 20(9-10):887–936, 2015.
  163. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In Partial Differential Equations and Related Topics, volume 446 of Lecture Notes in Mathematics, pages 5–49. Springer, 1974.
  164. The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal., 65(4):335–361, 1977.
  165. Nonlinear equations for fractional Laplacians II: Existence, uniqueness, and qualitative properties of solutions. Trans. Amer. Math. Soc., 367(2):911–941, 2015.
  166. A. Chmaj. Existence of traveling waves in the fractional bistable equation. Archiv der Mathematik, 100(5):473–480, May 2013.
  167. Traveling wave solutions of Allen-Cahn equation with a fractional Laplacian. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 32(4):785–812, 2015.
  168. Local and global minimizers for a variational energy involving a fractional norm. Ann. Mat. Pura Appl. (4), 192(4):673–718, 2013.
  169. Front-type solutions of fractional Allen-Cahn equation. Phys. D, 237(24):3237–3251, 2008.
  170. Exact solutions in front propagation problems with superdiffusion. Phys. D, 239(3-4):134–144, 2010.
  171. D.H. Zanette. Wave fronts in bistable reactions with anomalous Lévy-flight diffusion. Physical Review E, 55(1):1181–1184, 1997.
  172. H.P. McKean. Nagumo’s equation. Advances in mathematics, 4:209–223, 1970.
  173. Global asymptotic stability of traveling waves to the Allen-Cahn equation with a fractional Laplacian. Commun. Pure Appl. Anal., 18(5):2457–2472, 2019.
  174. The stability of traveling waves for Allen-Cahn equations with fractional Laplacian. Appl. Anal., 101(1):263–273, 2022.
  175. Traveling waves in a convolution model for phase transitions. Arch. Rational Mech. Anal., 138(2):105–136, 1997.
  176. Xinfu Chen. Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Differential Equations, 2(1):125–160, 1997.
  177. An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations, 32(7-9):1245–1260, 2007.
  178. Mateusz Kwaśnicki. Harmonic extension technique for non-symmetric operators with completely monotone kernels. Calc. Var. Partial Differential Equations, 61(6):Paper No. 202, 40, 2022.
  179. Maria G. Westdickenberg. On the metastability of the 1-d𝑑ditalic_d Allen-Cahn equation. J. Dynam. Differential Equations, 33(4):1853–1879, 2021.
  180. Analysis and numerics of traveling waves for asymmetric fractional reaction-diffusion equations. Commun. Appl. Ind. Math., 6(2):e–532, 25, 2015.
  181. Jack Xin. Front propagation in heterogeneous media. SIAM Rev., 42(2):161–230, 2000.
  182. François Hamel. Bistable transition fronts in ℝNsuperscriptℝ𝑁\mathbb{R}^{N}blackboard_R start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT. Adv. Math., 289:279–344, 2016.
  183. Masaharu Taniguchi. Traveling front solutions in reaction-diffusion equations, volume 39 of MSJ Memoirs. Mathematical Society of Japan, Tokyo, 2021.
  184. J. X. Xin. Multidimensional stability of traveling waves in a bistable reaction-diffusion equation. I. Comm. Partial Differential Equations, 17(11-12):1889–1899, 1992.
  185. Multidimensional stability of traveling waves in a bistable reaction-diffusion equation. II. Comm. Partial Differential Equations, 17(11-12):1901–1924, 1992.
  186. Christopher K. R. T. Jones. Asymptotic behaviour of a reaction-diffusion equation in higher space dimensions. Rocky Mountain J. Math., 13(2):355–364, 1983.
  187. Todd Kapitula. Multidimensional stability of planar travelling waves. Trans. Amer. Math. Soc., 349(1):257–269, 1997.
  188. Traveling wave solutions of parabolic systems, volume 140 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1994. Translated from the Russian manuscript by James F. Heyda.
  189. Traveling front solutions for perturbed reaction-diffusion equations. Math. J. Okayama Univ., 65:125–143, 2023.
  190. Traveling waves with paraboloid like interfaces for balanced bistable dynamics. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 24(3):369–393, 2007.
  191. Generalized transition waves and their properties. Comm. Pure Appl. Math., 65(5):592–648, 2012.
  192. Rigidity results for elliptic PDEs with uniform limits: an abstract framework with applications. Indiana Univ. Math. J., 60(1):121–141, 2011.
  193. Long-range phase coexistence models: recent progress on the fractional Allen-Cahn equation. In Topics in applied analysis and optimisation—partial differential equations, stochastic and numerical analysis, CIM Ser. Math. Sci., pages 121–138. Springer, Cham, [2019] ©2019.
  194. The state of the art for a conjecture of De Giorgi and related problems. In Recent progress on reaction-diffusion systems and viscosity solutions, pages 74–96. World Sci. Publ., Hackensack, NJ, 2009.
  195. O. Savin. Phase transitions, minimal surfaces and a conjecture of De Giorgi. In Current developments in mathematics, 2009, pages 59–113. Int. Press, Somerville, MA, 2010.
  196. On De Giorgi’s conjecture: recent progress and open problems. Sci. China Math., 61(11):1925–1946, 2018.
  197. Table of integrals, series, and products. Elsevier/Academic Press, Amsterdam, eighth edition, 2015. Translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll.
  198. Traveling wave solutions for bistable fractional Allen-Cahn equations with a pyramidal front. J. Differential Equations, 262(9):4567–4609, 2017.
  199. On the existence of cylindrically symmetric traveling fronts of fractional Allen-Cahn equation in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Differential Integral Equations, 34(9-10):467–490, 2021.
  200. V-shaped traveling fronts of fractional Allen-Cahn equations. J. Math. Phys., 63(2):Paper No. 021507, 29, 2022.
  201. The stability of the equilibria of the Allen-Cahn equation with fractional diffusion. Appl. Anal., 98(3):600–610, 2019.
  202. Improvement of flatness for nonlocal phase transitions. Amer. J. Math., 142(4):1083–1160, 2020.
  203. Some perspectives on (non)local phase transitions and minimal surfaces. Bull. Math. Sci., 13(1):Paper No. 2330001, 77, 2023.
  204. George Em Karniadakis, editor. Handbook of fractional calculus with applications. Vol. 3. De Gruyter, Berlin, 2019. Numerical methods.
  205. Changpin Li and An Chen. Numerical methods for fractional partial differential equations. Int. J. Comput. Math., 95(6-7):1048–1099, 2018.
  206. Numerical treatment and analysis of time-fractional evolution equations, volume 214 of Applied Mathematical Sciences. Springer, Cham, [2023] ©2023.
  207. Martin Stynes. Singularities. In Handbook of fractional calculus with applications. Vol. 3, pages 287–305. De Gruyter, Berlin, 2019.
  208. Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal., 55(2):1057–1079, 2017.
  209. Time-stepping error bounds for fractional diffusion problems with non-smooth initial data. J. Comput. Phys., 293:201–217, 2015.
  210. Hermann Brunner. Collocation methods for Volterra integral and related functional differential equations, volume 15 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2004.
  211. C. Lubich. Convolution quadrature and discretized operational calculus. I. Numer. Math., 52(2):129–145, 1988.
  212. C. Lubich. Convolution quadrature and discretized operational calculus. II. Numer. Math., 52(4):413–425, 1988.
  213. L. Banjai and F.-J. Sayas. Integral equation methods for evolutionary PDE, volume 53 of Springer Series in Computational Mathematics. Springer Verlag, 2022.
  214. Ch. Lubich and A. Ostermann. Runge-Kutta methods for parabolic equations and convolution quadrature. Math. Comp., 60(201):105–131, 1993.
  215. Christian Lubich. Convolution quadrature revisited. BIT, 44(3):503–514, 2004.
  216. Generalized convolution quadrature for the fractional integral and fractional diffusion equations, 2023.
  217. A posteriori error analysis for approximations of time-fractional subdiffusion problems. Math. Comp., 91(336):1711–1737, 2022.
  218. A new version of the fast multipole method for the Laplace equation in three dimensions. In Acta numerica, 1997, volume 6 of Acta Numer., pages 229–269. Cambridge Univ. Press, Cambridge, 1997.
  219. Multiscale bases for the sparse representation of boundary integral operators on complex geometry. SIAM J. Sci. Comput., 24(5):1610–1629, 2003.
  220. Wolfgang Hackbusch. Hierarchical matrices: algorithms and analysis, volume 49 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2015.
  221. William McLean. Exponential sum approximations for t−βsuperscript𝑡𝛽t^{-\beta}italic_t start_POSTSUPERSCRIPT - italic_β end_POSTSUPERSCRIPT. In Contemporary computational mathematics—a celebration of the 80th birthday of Ian Sloan. Vol. 1, 2, pages 911–930. Springer, Cham, 2018.
  222. Fast and oblivious convolution quadrature. SIAM J. Sci. Comput., 28(2):421–438, 2006.
  223. A fast and oblivious matrix compression algorithm for Volterra integral operators. Adv. Comput. Math., 47(6):Paper No. 81, 24, 2021.
  224. Solving time-fractional differential equations via rational approximation. IMA J. Numer. Anal., 43(3):1263–1290, 2023.
  225. Spectral methods for fractional differential equations using generalized Jacobi functions. In Handbook of fractional calculus with applications. Vol. 3, pages 127–155. De Gruyter, Berlin, 2019.
  226. Spectral and spectral element methods for fractional advection-diffusion-reaction equations. In Handbook of fractional calculus with applications. Vol. 3, pages 157–183. De Gruyter, Berlin, 2019.
  227. Spectral and Spectral-Element Methods for Fractional Ordinary and Partial Differential Equations. Cambridge University Press, 2024.
  228. Log orthogonal functions: approximation properties and applications. IMA J. Numer. Anal., 42(1):712–743, 2022.
  229. Generalized Jacobi functions and their applications to fractional differential equations. Math. Comp., 85(300):1603–1638, 2016.
  230. Spectral element method with geometric mesh for two-sided fractional differential equations. Adv. Comput. Math., 44(3):745–771, 2018.
  231. Fractional Sturm-Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys., 252:495–517, 2013.
  232. Müntz spectral methods for the time-fractional diffusion equation. Comput. Methods Appl. Math., 18(1):43–62, 2018.
  233. Ch. Schwab. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press Oxford University Press, New York, 1998. Theory and applications in solid and fluid mechanics.
  234. A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal., 47(3):2108–2131, 2009.
  235. Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differential Equations, 22(3):558–576, 2006.
  236. A unified Petrov-Galerkin spectral method for fractional PDEs. Comput. Methods Appl. Mech. Engrg., 283:1545–1569, 2015.
  237. Matrix computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, fourth edition, 2013.
  238. Numerical methods for fractional diffusion. Comput. Vis. Sci., 19(5-6):19–46, 2018.
  239. What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys., 404:109009, 62, 2020.
  240. Clemens Hofreither. A unified view of some numerical methods for fractional diffusion. Comput. Math. Appl., 80(2):332–350, 2020.
  241. An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J. Sci. Comput., 34(4):A2145–A2172, 2012.
  242. Clemens Hofreither. An algorithm for best rational approximation based on barycentric rational interpolation. Numer. Algorithms, 88(1):365–388, 2021.
Citations (3)

Summary

We haven't generated a summary for this paper yet.