Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

cuSZ-$i$: High-Ratio Scientific Lossy Compression on GPUs with Optimized Multi-Level Interpolation (2312.05492v6)

Published 9 Dec 2023 in cs.DC

Abstract: Error-bounded lossy compression is a critical technique for significantly reducing scientific data volumes. Compared to CPU-based compressors, GPU-based compressors exhibit substantially higher throughputs, fitting better for today's HPC applications. However, the critical limitations of existing GPU-based compressors are their low compression ratios and qualities, severely restricting their applicability. To overcome these, we introduce a new GPU-based error-bounded scientific lossy compressor named cuSZ-$i$, with the following contributions: (1) A novel GPU-optimized interpolation-based prediction method significantly improves the compression ratio and decompression data quality. (2) The Huffman encoding module in cuSZ-$i$ is optimized for better efficiency. (3) cuSZ-$i$ is the first to integrate the NVIDIA Bitcomp-lossless as an additional compression-ratio-enhancing module. Evaluations show that cuSZ-$i$ significantly outperforms other latest GPU-based lossy compressors in compression ratio under the same error bound (hence, the desired quality), showcasing a 476% advantage over the second-best. This leads to cuSZ-$i$'s optimized performance in several real-world use cases.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.