Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Stochastic Directly-Follows Process Discovery Using Grammatical Inference (2312.05433v2)

Published 9 Dec 2023 in cs.AI and cs.FL

Abstract: Starting with a collection of traces generated by process executions, process discovery is the task of constructing a simple model that describes the process, where simplicity is often measured in terms of model size. The challenge of process discovery is that the process of interest is unknown, and that while the input traces constitute positive examples of process executions, no negative examples are available. Many commercial tools discover Directly-Follows Graphs, in which nodes represent the observable actions of the process, and directed arcs indicate execution order possibilities over the actions. We propose a new approach for discovering sound Directly-Follows Graphs that is grounded in grammatical inference over the input traces. To promote the discovery of small graphs that also describe the process accurately we design and evaluate a genetic algorithm that supports the convergence of the inference parameters to the areas that lead to the discovery of interesting models. Experiments over real-world datasets confirm that our new approach can construct smaller models that represent the input traces and their frequencies more accurately than the state-of-the-art technique. Reasoning over the frequencies of encoded traces also becomes possible, due to the stochastic semantics of the action graphs we propose, which, for the first time, are interpreted as models that describe the stochastic languages of action traces.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com