On the Performance of Temporal Difference Learning With Neural Networks (2312.05397v1)
Abstract: Neural Temporal Difference (TD) Learning is an approximate temporal difference method for policy evaluation that uses a neural network for function approximation. Analysis of Neural TD Learning has proven to be challenging. In this paper we provide a convergence analysis of Neural TD Learning with a projection onto $B(\theta_0, \omega)$, a ball of fixed radius $\omega$ around the initial point $\theta_0$. We show an approximation bound of $O(\epsilon) + \tilde{O} (1/\sqrt{m})$ where $\epsilon$ is the approximation quality of the best neural network in $B(\theta_0, \omega)$ and $m$ is the width of all hidden layers in the network.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.