Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Stochastic Simulation Method for Fractional Order Compartment Models (2312.05268v2)

Published 7 Dec 2023 in cond-mat.stat-mech, math.PR, and q-bio.PE

Abstract: Our study focuses on fractional order compartment models derived from underlying physical stochastic processes, providing a more physically grounded approach compared to models that use the dynamical system approach by simply replacing integer-order derivatives with fractional order derivatives. In these models, inherent stochasticity becomes important, particularly when dealing with the dynamics of small populations far from the continuum limit of large particle numbers. The necessity for stochastic simulations arises from deviations of the mean states from those obtained from the governing equations in these scenarios. To address this, we introduce an exact stochastic simulation algorithm designed for fractional order compartment models, based on a semi-Markov process. We have considered a fractional order resusceptibility SIS model and a fractional order recovery SIR model as illustrative examples, highlighting significant disparities between deterministic and stochastic dynamics when the total population is small. Beyond its modeling applications, the algorithm presented serves as a versatile tool for solving fractional order differential equations via Monte Carlo simulations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: