Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DeltaZip: Efficient Serving of Multiple Full-Model-Tuned LLMs (2312.05215v3)

Published 8 Dec 2023 in cs.DC and cs.LG

Abstract: Fine-tuning LLMs greatly improves model quality for downstream tasks. However, serving many fine-tuned LLMs concurrently is challenging due to the sporadic, bursty, and varying request patterns of different LLMs. To bridge this gap, we present DeltaZip, an LLM serving system that efficiently serves multiple full-parameter fine-tuned models concurrently by aggressively compressing model deltas by up to 10x while maintaining high model quality. The key insight behind this design is that fine-tuning results in small-magnitude changes to the pre-trained model. By co-designing the serving system with the compression algorithm, DeltaZip achieves 2x to 12x improvement in throughput compared to the state-of-the-art systems.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com