Papers
Topics
Authors
Recent
2000 character limit reached

Multi-Agent Reinforcement Learning via Distributed MPC as a Function Approximator (2312.05166v4)

Published 8 Dec 2023 in eess.SY and cs.SY

Abstract: This paper presents a novel approach to multi-agent reinforcement learning (RL) for linear systems with convex polytopic constraints. Existing work on RL has demonstrated the use of model predictive control (MPC) as a function approximator for the policy and value functions. The current paper is the first work to extend this idea to the multi-agent setting. We propose the use of a distributed MPC scheme as a function approximator, with a structure allowing for distributed learning and deployment. We then show that Q-learning updates can be performed distributively without introducing nonstationarity, by reconstructing a centralized learning update. The effectiveness of the approach is demonstrated on two numerical examples.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.