Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-Agent Reinforcement Learning via Distributed MPC as a Function Approximator (2312.05166v4)

Published 8 Dec 2023 in eess.SY and cs.SY

Abstract: This paper presents a novel approach to multi-agent reinforcement learning (RL) for linear systems with convex polytopic constraints. Existing work on RL has demonstrated the use of model predictive control (MPC) as a function approximator for the policy and value functions. The current paper is the first work to extend this idea to the multi-agent setting. We propose the use of a distributed MPC scheme as a function approximator, with a structure allowing for distributed learning and deployment. We then show that Q-learning updates can be performed distributively without introducing nonstationarity, by reconstructing a centralized learning update. The effectiveness of the approach is demonstrated on two numerical examples.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube