Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake Detection (2312.04961v1)

Published 7 Dec 2023 in cs.CV

Abstract: Deepfake detection refers to detecting artificially generated or edited faces in images or videos, which plays an essential role in visual information security. Despite promising progress in recent years, Deepfake detection remains a challenging problem due to the complexity and variability of face forgery techniques. Existing Deepfake detection methods are often devoted to extracting features by designing sophisticated networks but ignore the influence of perceptual quality of faces. Considering the complexity of the quality distribution of both real and fake faces, we propose a novel Deepfake detection framework named DeepFidelity to adaptively distinguish real and fake faces with varying image quality by mining the perceptual forgery fidelity of face images. Specifically, we improve the model's ability to identify complex samples by mapping real and fake face data of different qualities to different scores to distinguish them in a more detailed way. In addition, we propose a network structure called Symmetric Spatial Attention Augmentation based vision Transformer (SSAAFormer), which uses the symmetry of face images to promote the network to model the geographic long-distance relationship at the shallow level and augment local features. Extensive experiments on multiple benchmark datasets demonstrate the superiority of the proposed method over state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.