Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning to Break: Knowledge-Enhanced Reasoning in Multi-Agent Debate System (2312.04854v2)

Published 8 Dec 2023 in cs.CL and cs.AI

Abstract: Multi-agent debate system (MAD) imitating the process of human discussion in pursuit of truth, aims to align the correct cognition of different agents for the optimal solution. It is challenging to make various agents perform right and highly consistent cognition due to their limited and different knowledge backgrounds (i.e., cognitive islands), which hinders the search for the optimal solution. To address the challenge, we propose a novel \underline{M}ulti-\underline{A}gent \underline{D}ebate with \underline{K}nowledge-\underline{E}nhanced framework (\textbf{MADKE}) to promote the system to find the solution. First, we involve a shared retrieval knowledge pool in the debate process to solve the problem of limited and different knowledge backgrounds. Then, we propose an adaptive knowledge selection method to guarantee the accuracy and personalization of knowledge. This method allows agents to choose whether to use external knowledge in each conversation round according to their own needs. Our experimental results on six datasets show that our method achieves state-of-the-art results compared to existing single-agent and multi-agent methods. Further analysis reveals that the introduction of retrieval knowledge can help the agent to break cognitive islands in the debate process and effectively improve the consistency and correctness of the model. Moreover, MADKE using Qwen1.5-72B-Chat surpasses GPT-4 by +1.26\% on average in six datasets, which validates that our method can help open-source LLMs achieve or even surpass the performance of GPT-4. Our code is available at \url{https://github.com/FutureForMe/MADKE}.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube