Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

RL Dreams: Policy Gradient Optimization for Score Distillation based 3D Generation (2312.04806v1)

Published 8 Dec 2023 in cs.CV

Abstract: 3D generation has rapidly accelerated in the past decade owing to the progress in the field of generative modeling. Score Distillation Sampling (SDS) based rendering has improved 3D asset generation to a great extent. Further, the recent work of Denoising Diffusion Policy Optimization (DDPO) demonstrates that the diffusion process is compatible with policy gradient methods and has been demonstrated to improve the 2D diffusion models using an aesthetic scoring function. We first show that this aesthetic scorer acts as a strong guide for a variety of SDS-based methods and demonstrates its effectiveness in text-to-3D synthesis. Further, we leverage the DDPO approach to improve the quality of the 3D rendering obtained from 2D diffusion models. Our approach, DDPO3D, employs the policy gradient method in tandem with aesthetic scoring. To the best of our knowledge, this is the first method that extends policy gradient methods to 3D score-based rendering and shows improvement across SDS-based methods such as DreamGaussian, which are currently driving research in text-to-3D synthesis. Our approach is compatible with score distillation-based methods, which would facilitate the integration of diverse reward functions into the generative process. Our project page can be accessed via https://ddpo3d.github.io.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com