Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Distributed Optimization via Kernelized Multi-armed Bandits (2312.04719v1)

Published 7 Dec 2023 in cs.LG, cs.MA, and math.OC

Abstract: Multi-armed bandit algorithms provide solutions for sequential decision-making where learning takes place by interacting with the environment. In this work, we model a distributed optimization problem as a multi-agent kernelized multi-armed bandit problem with a heterogeneous reward setting. In this setup, the agents collaboratively aim to maximize a global objective function which is an average of local objective functions. The agents can access only bandit feedback (noisy reward) obtained from the associated unknown local function with a small norm in reproducing kernel Hilbert space (RKHS). We present a fully decentralized algorithm, Multi-agent IGP-UCB (MA-IGP-UCB), which achieves a sub-linear regret bound for popular classes for kernels while preserving privacy. It does not necessitate the agents to share their actions, rewards, or estimates of their local function. In the proposed approach, the agents sample their individual local functions in a way that benefits the whole network by utilizing a running consensus to estimate the upper confidence bound on the global function. Furthermore, we propose an extension, Multi-agent Delayed IGP-UCB (MAD-IGP-UCB) algorithm, which reduces the dependence of the regret bound on the number of agents in the network. It provides improved performance by utilizing a delay in the estimation update step at the cost of more communication.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)