Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Surrogate Modelling for Sea Ice Concentration using Lightweight Neural Ensemble (2312.04330v1)

Published 7 Dec 2023 in cs.LG, cs.AI, and physics.ao-ph

Abstract: The modeling and forecasting of sea ice conditions in the Arctic region are important tasks for ship routing, offshore oil production, and environmental monitoring. We propose the adaptive surrogate modeling approach named LANE-SI (Lightweight Automated Neural Ensembling for Sea Ice) that uses ensemble of relatively simple deep learning models with different loss functions for forecasting of spatial distribution for sea ice concentration in the specified water area. Experimental studies confirm the quality of a long-term forecast based on a deep learning model fitted to the specific water area is comparable to resource-intensive physical modeling, and for some periods of the year, it is superior. We achieved a 20% improvement against the state-of-the-art physics-based forecast system SEAS5 for the Kara Sea.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.