Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

GPT4SGG: Synthesizing Scene Graphs from Holistic and Region-specific Narratives (2312.04314v2)

Published 7 Dec 2023 in cs.CV

Abstract: Training Scene Graph Generation (SGG) models with natural language captions has become increasingly popular due to the abundant, cost-effective, and open-world generalization supervision signals that natural language offers. However, such unstructured caption data and its processing pose significant challenges in learning accurate and comprehensive scene graphs. The challenges can be summarized as three aspects: 1) traditional scene graph parsers based on linguistic representation often fail to extract meaningful relationship triplets from caption data. 2) grounding unlocalized objects of parsed triplets will meet ambiguity issues in visual-language alignment. 3) caption data typically are sparse and exhibit bias to partial observations of image content. Aiming to address these problems, we propose a divide-and-conquer strategy with a novel framework named \textit{GPT4SGG}, to obtain more accurate and comprehensive scene graph signals. This framework decomposes a complex scene into a bunch of simple regions, resulting in a set of region-specific narratives. With these region-specific narratives (partial observations) and a holistic narrative (global observation) for an image, a LLM performs the relationship reasoning to synthesize an accurate and comprehensive scene graph. Experimental results demonstrate \textit{GPT4SGG} significantly improves the performance of SGG models trained on image-caption data, in which the ambiguity issue and long-tail bias have been well-handled with more accurate and comprehensive scene graphs.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.