Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

MeanCut: A Greedy-Optimized Graph Clustering via Path-based Similarity and Degree Descent Criterion (2312.04067v1)

Published 7 Dec 2023 in cs.LG

Abstract: As the most typical graph clustering method, spectral clustering is popular and attractive due to the remarkable performance, easy implementation, and strong adaptability. Classical spectral clustering measures the edge weights of graph using pairwise Euclidean-based metric, and solves the optimal graph partition by relaxing the constraints of indicator matrix and performing Laplacian decomposition. However, Euclidean-based similarity might cause skew graph cuts when handling non-spherical data distributions, and the relaxation strategy introduces information loss. Meanwhile, spectral clustering requires specifying the number of clusters, which is hard to determine without enough prior knowledge. In this work, we leverage the path-based similarity to enhance intra-cluster associations, and propose MeanCut as the objective function and greedily optimize it in degree descending order for a nondestructive graph partition. This algorithm enables the identification of arbitrary shaped clusters and is robust to noise. To reduce the computational complexity of similarity calculation, we transform optimal path search into generating the maximum spanning tree (MST), and develop a fast MST (FastMST) algorithm to further improve its time-efficiency. Moreover, we define a density gradient factor (DGF) for separating the weakly connected clusters. The validity of our algorithm is demonstrated by testifying on real-world benchmarks and application of face recognition. The source code of MeanCut is available at https://github.com/ZPGuiGroupWhu/MeanCut-Clustering.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets