Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Defense against ML-based Power Side-channel Attacks on DNN Accelerators with Adversarial Attacks (2312.04035v1)

Published 7 Dec 2023 in cs.CR

Abstract: AI hardware accelerators have been widely adopted to enhance the efficiency of deep learning applications. However, they also raise security concerns regarding their vulnerability to power side-channel attacks (SCA). In these attacks, the adversary exploits unintended communication channels to infer sensitive information processed by the accelerator, posing significant privacy and copyright risks to the models. Advanced machine learning algorithms are further employed to facilitate the side-channel analysis and exacerbate the privacy issue of AI accelerators. Traditional defense strategies naively inject execution noise to the runtime of AI models, which inevitably introduce large overheads. In this paper, we present AIAShield, a novel defense methodology to safeguard FPGA-based AI accelerators and mitigate model extraction threats via power-based SCAs. The key insight of AIAShield is to leverage the prominent adversarial attack technique from the machine learning community to craft delicate noise, which can significantly obfuscate the adversary's side-channel observation while incurring minimal overhead to the execution of the protected model. At the hardware level, we design a new module based on ring oscillators to achieve fine-grained noise generation. At the algorithm level, we repurpose Neural Architecture Search to worsen the adversary's extraction results. Extensive experiments on the Nvidia Deep Learning Accelerator (NVDLA) demonstrate that AIAShield outperforms existing solutions with excellent transferability.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube