Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Layer-Wise Tokens-to-Token Transformer Network for Improved Historical Document Image Enhancement (2312.03946v1)

Published 6 Dec 2023 in cs.CV

Abstract: Document image enhancement is a fundamental and important stage for attaining the best performance in any document analysis assignment because there are many degradation situations that could harm document images, making it more difficult to recognize and analyze them. In this paper, we propose \textbf{T2T-BinFormer} which is a novel document binarization encoder-decoder architecture based on a Tokens-to-token vision transformer. Each image is divided into a set of tokens with a defined length using the ViT model, which is then applied several times to model the global relationship between the tokens. However, the conventional tokenization of input data does not adequately reflect the crucial local structure between adjacent pixels of the input image, which results in low efficiency. Instead of using a simple ViT and hard splitting of images for the document image enhancement task, we employed a progressive tokenization technique to capture this local information from an image to achieve more effective results. Experiments on various DIBCO and H-DIBCO benchmarks demonstrate that the proposed model outperforms the existing CNN and ViT-based state-of-the-art methods. In this research, the primary area of examination is the application of the proposed architecture to the task of document binarization. The source code will be made available at https://github.com/RisabBiswas/T2T-BinFormer.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.