Adaptive Weighted Co-Learning for Cross-Domain Few-Shot Learning (2312.03928v1)
Abstract: Due to the availability of only a few labeled instances for the novel target prediction task and the significant domain shift between the well annotated source domain and the target domain, cross-domain few-shot learning (CDFSL) induces a very challenging adaptation problem. In this paper, we propose a simple Adaptive Weighted Co-Learning (AWCoL) method to address the CDFSL challenge by adapting two independently trained source prototypical classification models to the target task in a weighted co-learning manner. The proposed method deploys a weighted moving average prediction strategy to generate probabilistic predictions from each model, and then conducts adaptive co-learning by jointly fine-tuning the two models in an alternating manner based on the pseudo-labels and instance weights produced from the predictions. Moreover, a negative pseudo-labeling regularizer is further deployed to improve the fine-tuning process by penalizing false predictions. Comprehensive experiments are conducted on multiple benchmark datasets and the empirical results demonstrate that the proposed method produces state-of-the-art CDFSL performance.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.