Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Rank Parameters (2312.03859v1)

Published 6 Dec 2023 in cs.DM and cs.CC

Abstract: A homomorphism from a graph $G$ to a graph $H$ is an edge-preserving mapping from $V(G)$ to $V(H)$. In the graph homomorphism problem, denoted by $Hom(H)$, the graph $H$ is fixed and we need to determine if there exists a homomorphism from an instance graph $G$ to $H$. We study the complexity of the problem parameterized by the cutwidth of $G$. We aim, for each $H$, for algorithms for $Hom(H)$ running in time $c_Hk n{\mathcal{O}(1)}$ and matching lower bounds that exclude $c_H{k \cdot o(1)}n{\mathcal{O}(1)}$ or $c_H{k(1-\Omega(1))}n{\mathcal{O}(1)}$ time algorithms under the (Strong) Exponential Time Hypothesis. In the paper we introduce a new parameter that we call $\mathrm{mimsup}(H)$. Our main contribution is strong evidence of a close connection between $c_H$ and $\mathrm{mimsup}(H)$: * an information-theoretic argument that the number of states needed in a natural dynamic programming algorithm is at most $\mathrm{mimsup}(H)k$, * lower bounds that show that for almost all graphs $H$ indeed we have $c_H \geq \mathrm{mimsup}(H)$, assuming the (Strong) Exponential-Time Hypothesis, and * an algorithm with running time $\exp ( {\mathcal{O}( \mathrm{mimsup}(H) \cdot k \log k)}) n{\mathcal{O}(1)}$. The parameter $\mathrm{mimsup}(H)$ can be thought of as the $p$-th root of the maximum induced matching number in the graph obtained by multiplying $p$ copies of $H$ via certain graph product, where $p$ tends to infinity. It can also be defined as an asymptotic rank parameter of the adjacency matrix of $H$. Our results tightly link the parameterized complexity of a problem to such an asymptotic rank parameter for the first time.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.