Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

AnimatableDreamer: Text-Guided Non-rigid 3D Model Generation and Reconstruction with Canonical Score Distillation (2312.03795v3)

Published 6 Dec 2023 in cs.CV

Abstract: Advances in 3D generation have facilitated sequential 3D model generation (a.k.a 4D generation), yet its application for animatable objects with large motion remains scarce. Our work proposes AnimatableDreamer, a text-to-4D generation framework capable of generating diverse categories of non-rigid objects on skeletons extracted from a monocular video. At its core, AnimatableDreamer is equipped with our novel optimization design dubbed Canonical Score Distillation (CSD), which lifts 2D diffusion for temporal consistent 4D generation. CSD, designed from a score gradient perspective, generates a canonical model with warp-robustness across different articulations. Notably, it also enhances the authenticity of bones and skinning by integrating inductive priors from a diffusion model. Furthermore, with multi-view distillation, CSD infers invisible regions, thereby improving the fidelity of monocular non-rigid reconstruction. Extensive experiments demonstrate the capability of our method in generating high-flexibility text-guided 3D models from the monocular video, while also showing improved reconstruction performance over existing non-rigid reconstruction methods.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube