Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AnimatableDreamer: Text-Guided Non-rigid 3D Model Generation and Reconstruction with Canonical Score Distillation (2312.03795v3)

Published 6 Dec 2023 in cs.CV

Abstract: Advances in 3D generation have facilitated sequential 3D model generation (a.k.a 4D generation), yet its application for animatable objects with large motion remains scarce. Our work proposes AnimatableDreamer, a text-to-4D generation framework capable of generating diverse categories of non-rigid objects on skeletons extracted from a monocular video. At its core, AnimatableDreamer is equipped with our novel optimization design dubbed Canonical Score Distillation (CSD), which lifts 2D diffusion for temporal consistent 4D generation. CSD, designed from a score gradient perspective, generates a canonical model with warp-robustness across different articulations. Notably, it also enhances the authenticity of bones and skinning by integrating inductive priors from a diffusion model. Furthermore, with multi-view distillation, CSD infers invisible regions, thereby improving the fidelity of monocular non-rigid reconstruction. Extensive experiments demonstrate the capability of our method in generating high-flexibility text-guided 3D models from the monocular video, while also showing improved reconstruction performance over existing non-rigid reconstruction methods.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com