Papers
Topics
Authors
Recent
2000 character limit reached

Don't Overlook the Grammatical Gender: Bias Evaluation for Hindi-English Machine Translation (2312.03710v1)

Published 11 Nov 2023 in cs.CL

Abstract: Neural Machine Translation (NMT) models, though state-of-the-art for translation, often reflect social biases, particularly gender bias. Existing evaluation benchmarks primarily focus on English as the source language of translation. For source languages other than English, studies often employ gender-neutral sentences for bias evaluation, whereas real-world sentences frequently contain gender information in different forms. Therefore, it makes more sense to evaluate for bias using such source sentences to determine if NMT models can discern gender from the grammatical gender cues rather than relying on biased associations. To illustrate this, we create two gender-specific sentence sets in Hindi to automatically evaluate gender bias in various Hindi-English (HI-EN) NMT systems. We emphasise the significance of tailoring bias evaluation test sets to account for grammatical gender markers in the source language.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.