Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Don't Overlook the Grammatical Gender: Bias Evaluation for Hindi-English Machine Translation (2312.03710v1)

Published 11 Nov 2023 in cs.CL

Abstract: Neural Machine Translation (NMT) models, though state-of-the-art for translation, often reflect social biases, particularly gender bias. Existing evaluation benchmarks primarily focus on English as the source language of translation. For source languages other than English, studies often employ gender-neutral sentences for bias evaluation, whereas real-world sentences frequently contain gender information in different forms. Therefore, it makes more sense to evaluate for bias using such source sentences to determine if NMT models can discern gender from the grammatical gender cues rather than relying on biased associations. To illustrate this, we create two gender-specific sentence sets in Hindi to automatically evaluate gender bias in various Hindi-English (HI-EN) NMT systems. We emphasise the significance of tailoring bias evaluation test sets to account for grammatical gender markers in the source language.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)