Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Parameter-Efficient Transfer Learning of Audio Spectrogram Transformers (2312.03694v4)

Published 6 Dec 2023 in eess.AS

Abstract: Parameter-efficient transfer learning (PETL) methods have emerged as a solid alternative to the standard full fine-tuning approach. They only train a few extra parameters for each downstream task, without sacrificing performance and dispensing with the issue of storing a copy of the pre-trained model for each task. For audio classification tasks, the Audio Spectrogram Transformer (AST) model shows impressive results. However, surprisingly, how to efficiently adapt it to several downstream tasks has not been tackled before. In this paper, we bridge this gap and present a detailed investigation of common PETL methods for the adaptation of the AST model to audio/speech tasks. Furthermore, we propose a new adapter design that exploits the convolution module of the Conformer model, leading to superior performance over the standard PETL approaches and surpassing or achieving performance parity with full fine-tuning by updating only 0.29% of the parameters. Finally, we provide ablation studies revealing that our proposed adapter: 1) proves to be effective in few-shot efficient transfer learning, 2) attains optimal results regardless of the amount of the allocated parameters, and 3) can be applied to other pre-trained models.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube