Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Precision of Individual Shapley Value Explanations (2312.03485v1)

Published 6 Dec 2023 in stat.ML, cs.LG, stat.AP, and stat.CO

Abstract: Shapley values are extensively used in explainable artificial intelligence (XAI) as a framework to explain predictions made by complex ML models. In this work, we focus on conditional Shapley values for predictive models fitted to tabular data and explain the prediction $f(\boldsymbol{x}{*})$ for a single observation $\boldsymbol{x}{*}$ at the time. Numerous Shapley value estimation methods have been proposed and empirically compared on an average basis in the XAI literature. However, less focus has been devoted to analyzing the precision of the Shapley value explanations on an individual basis. We extend our work in Olsen et al. (2023) by demonstrating and discussing that the explanations are systematically less precise for observations on the outer region of the training data distribution for all used estimation methods. This is expected from a statistical point of view, but to the best of our knowledge, it has not been systematically addressed in the Shapley value literature. This is crucial knowledge for Shapley values practitioners, who should be more careful in applying these observations' corresponding Shapley value explanations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.