Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Text-to-Text Model for Multilingual Offensive Language Identification (2312.03379v1)

Published 6 Dec 2023 in cs.CL

Abstract: The ubiquity of offensive content on social media is a growing cause for concern among companies and government organizations. Recently, transformer-based models such as BERT, XLNET, and XLM-R have achieved state-of-the-art performance in detecting various forms of offensive content (e.g. hate speech, cyberbullying, and cyberaggression). However, the majority of these models are limited in their capabilities due to their encoder-only architecture, which restricts the number and types of labels in downstream tasks. Addressing these limitations, this study presents the first pre-trained model with encoder-decoder architecture for offensive language identification with text-to-text transformers (T5) trained on two large offensive language identification datasets; SOLID and CCTK. We investigate the effectiveness of combining two datasets and selecting an optimal threshold in semi-supervised instances in SOLID in the T5 retraining step. Our pre-trained T5 model outperforms other transformer-based models fine-tuned for offensive language detection, such as fBERT and HateBERT, in multiple English benchmarks. Following a similar approach, we also train the first multilingual pre-trained model for offensive language identification using mT5 and evaluate its performance on a set of six different languages (German, Hindi, Korean, Marathi, Sinhala, and Spanish). The results demonstrate that this multilingual model achieves a new state-of-the-art on all the above datasets, showing its usefulness in multilingual scenarios. Our proposed T5-based models will be made freely available to the community.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.