Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Lightweight Speaker Verification Using Transformation Module with Feature Partition and Fusion (2312.03324v1)

Published 6 Dec 2023 in eess.AS

Abstract: Although many efforts have been made on decreasing the model complexity for speaker verification, it is still challenging to deploy speaker verification systems with satisfactory result on low-resource terminals. We design a transformation module that performs feature partition and fusion to implement lightweight speaker verification. The transformation module consists of multiple simple but effective operations, such as convolution, pooling, mean, concatenation, normalization, and element-wise summation. It works in a plug-and-play way, and can be easily implanted into a wide variety of models to reduce the model complexity while maintaining the model error. First, the input feature is split into several low-dimensional feature subsets for decreasing the model complexity. Then, each feature subset is updated by fusing it with the inter-feature-subsets correlational information to enhance its representational capability. Finally, the updated feature subsets are independently fed into the block (one or several layers) of the model for further processing. The features that are output from current block of the model are processed according to the steps above before they are fed into the next block of the model. Experimental data are selected from two public speech corpora (namely VoxCeleb1 and VoxCeleb2). Results show that implanting the transformation module into three models (namely AMCRN, ResNet34, and ECAPA-TDNN) for speaker verification slightly increases the model error and significantly decreases the model complexity. Our proposed method outperforms baseline methods on the whole in memory requirement and computational complexity with lower equal error rate. It also generalizes well across truncated segments with various lengths.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.