Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Simple Framework to Enhance the Adversarial Robustness of Deep Learning-based Intrusion Detection System (2312.03245v1)

Published 6 Dec 2023 in cs.CR and cs.AI

Abstract: Deep learning based intrusion detection systems (DL-based IDS) have emerged as one of the best choices for providing security solutions against various network intrusion attacks. However, due to the emergence and development of adversarial deep learning technologies, it becomes challenging for the adoption of DL models into IDS. In this paper, we propose a novel IDS architecture that can enhance the robustness of IDS against adversarial attacks by combining conventional ML models and Deep Learning models. The proposed DLL-IDS consists of three components: DL-based IDS, adversarial example (AE) detector, and ML-based IDS. We first develop a novel AE detector based on the local intrinsic dimensionality (LID). Then, we exploit the low attack transferability between DL models and ML models to find a robust ML model that can assist us in determining the maliciousness of AEs. If the input traffic is detected as an AE, the ML-based IDS will predict the maliciousness of input traffic, otherwise the DL-based IDS will work for the prediction. The fusion mechanism can leverage the high prediction accuracy of DL models and low attack transferability between DL models and ML models to improve the robustness of the whole system. In our experiments, we observe a significant improvement in the prediction performance of the IDS when subjected to adversarial attack, achieving high accuracy with low resource consumption.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.