Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Convergence Rates for Stochastic Approximation: Biased Noise with Unbounded Variance, and Applications (2312.02828v4)

Published 5 Dec 2023 in stat.ML, cs.LG, math.OC, and math.PR

Abstract: In this paper, we study the convergence properties of the Stochastic Gradient Descent (SGD) method for finding a stationary point of a given objective function $J(\cdot)$. The objective function is not required to be convex. Rather, our results apply to a class of invex'' functions, which have the property that every stationary point is also a global minimizer. First, it is assumed that $J(\cdot)$ satisfies a property that is slightly weaker than the Kurdyka-Lojasiewicz (KL) condition, denoted here as (KL'). It is shown that the iterations $J(\boldsymbol{\theta}_t)$ converge almost surely to the global minimum of $J(\cdot)$. Next, the hypothesis on $J(\cdot)$ is strengthened from (KL') to the Polyak-Lojasiewicz (PL) condition. With this stronger hypothesis, we derive estimates on the rate of convergence of $J(\boldsymbol{\theta}_t)$ to its limit. Using these results, we show that for functions satisfying the PL property, the convergence rate of both the objective function and the norm of the gradient with SGD is the same as the best-possible rate for convex functions. While some results along these lines have been published in the past, our contributions contain two distinct improvements. First, the assumptions on the stochastic gradient are more general than elsewhere, and second, our convergence is almost sure, and not in expectation. We also study SGD when only function evaluations are permitted. In this setting, we determine theoptimal'' increments or the size of the perturbations. Using the same set of ideas, we establish the global convergence of the Stochastic Approximation (SA) algorithm under more general assumptions on the measurement error, compared to the existing literature. We also derive bounds on the rate of convergence of the SA algorithm under appropriate assumptions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper: