Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

ULMA: Unified Language Model Alignment with Human Demonstration and Point-wise Preference (2312.02554v2)

Published 5 Dec 2023 in cs.LG and cs.CL

Abstract: Aligning LLMs to human expectations, e.g., being helpful and harmless, has become a pressing challenge for LLMs. A typical alignment procedure consists of supervised fine-tuning and preference learning. Most preference learning methods, such as RLHF and DPO, depend on pairwise preference data, which inadequately address scenarios where human feedback is point-wise, leading to potential information loss and suboptimal performance. Addressing this gap, we introduce Point-wise Direct Preference Optimization, a novel preference learning method designed to harness point-wise feedback effectively. Our work also uncovers a novel connection between supervised fine-tuning and point-wise preference learning, culminating in Unified LLM Alignment, a single-step method that unifies the alignment with human demonstrations and point-wise preferences. Extensive experiments on point-wise preference datasets with binary or continuous labels validate the effectiveness of our methods. Our code and a new dataset with high-quality demonstration samples on harmlessness are released.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.