The Akhiezer iteration (2312.02384v2)
Abstract: We develop the Akhiezer iteration, a generalization of the classical Chebyshev iteration, for the inner product-free, iterative solution of indefinite linear systems using orthogonal polynomials for measures supported on multiple, disjoint intervals. The iteration applies to shifted linear solves and can then be used for efficient matrix function approximation. Using the asymptotics of orthogonal polynomials, error bounds are provided. A key component in the efficiency of the method is the ability to compute the first $k$ orthogonal polynomial recurrence coefficients and the first $k$ weighted Stieltjes transforms of these orthogonal polynomials in $\mathrm{O}(k)$ complexity using a numerical Riemann--Hilbert approach. For a special class of orthogonal polynomials, the Akhiezer polynomials, the method can be sped up significantly, with the greatest speedup occurring in the two interval case where important formulae of Akhiezer are employed and the Riemann--Hilbert approach is bypassed.
- N. I. Akhiezer. Elements of the Theory of Elliptic Functions, volume 79 of Translations of Mathematical Monographs. American Mathematical Society, 1990.
- C. Ballew and T. Trogdon. https://github.com/cade-b/AkhiezerIteration, 2023.
- C. Ballew and T. Trogdon. A Riemann–Hilbert approach to computing the inverse spectral map for measures supported on disjoint intervals. Studies in Applied Mathematics, 152(1):31–72, 2024.
- Computation of large-genus solutions of the Korteweg–de Vries equation. Physica D: Nonlinear Phenomena, 449:133715, July 2023.
- I. Bogaert. Iteration-Free Computation of Gauss–Legendre Quadrature Nodes and Weights. SIAM Journal on Scientific Computing, 36(3):A1008–A1026, January 2014.
- Computing f(A)b𝑓𝐴𝑏f(A)bitalic_f ( italic_A ) italic_b via Least Squares Polynomial Approximations. SIAM Journal on Scientific Computing, 33(1):195–222, 2011.
- Y. Chen and A. R. Its. A Riemann–Hilbert approach to the Akhiezer polynomials. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1867):973–1003, 2007.
- Y. Chen and N. Lawrence. A generalization of the Chebyshev polynomials. J. Phys. A: Math. Gen, 35:4651–4699, 2002.
- C. de Boor and J. R. Rice. Extremal Polynomials with Application to Richardson Iteration for Indefinite Linear Systems. SIAM Journal on Scientific and Statistical Computing, 3(1):47–57, March 1982.
- P. Deift. Orthogonal polynomials and random matrices: A Riemann-Hilbert approach. American Math. Soc., 2000.
- X. Ding and T. Trogdon. A Riemann–Hilbert Approach to the Perturbation Theory for Orthogonal Polynomials: Applications to Numerical Linear Algebra and Random Matrix Theory. International Mathematics Research Notices, 2023.
- NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.1.11 of 2023-09-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
- D. A. Flanders and G. Shortley. Numerical Determination of Fundamental Modes. Journal of Applied Physics, 21(12):1326–1332, 1950.
- The isomonodromy approach to matric models in 2D quantum gravity. Communications in Mathematical Physics, 147(2):395–430, July 1992.
- W. Gautschi. Orthogonal Polynomials: Computation and Approximation. Oxford University Press, 2004.
- The numerically stable reconstruction of Jacobi matrices from spectral data. Numerische Mathematik, 44(3):317–335, 1984.
- M. H. Gutknecht and S. Röllin. The Chebyshev iteration revisited. Parallel Computing, 28(2):263–283, February 2002.
- N. Hale and A. Townsend. Fast and Accurate Computation of Gauss-Legendre and Gauss-Jacobi Quadrature Nodes and Weights. SIAM J. Sci. Comput., 35(2):A652–A674, 2013.
- D. Huybrechs and P. Opsomer. Construction and implementation of asymptotic expansions for Laguerre-type orthogonal polynomials. IMA Journal of Numerical Analysis, 38(3):1085–1118, December 2018.
- T. A. Manteuffel. The Tchebychev iteration for nonsymmetric linear systems. Numerische Mathematik, 28(3):307–327, 1977.
- T. A. Manteuffel. Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration. Numerische Mathematik, 31(2):183–208, June 1978.
- Chebyshev Polynomials. Chapman and Hall/CRC, 2002.
- The AAA Algorithm for Rational Approximation. SIAM Journal on Scientific Computing, 40(3):A1494–A1522, January 2018.
- Fast algorithms using orthogonal polynomials. Acta Numerica, 29:573–699, 2020.
- S. Olver and T. Trogdon. Numerical solution of Riemann–Hilbert Problems: Random matrix theory and orthogonal polynomials. Constructive Approximation, 39(1):101–149, December 2013.
- T. J. Rivlin. An introduction to the approximation of functions. Dover books on advanced mathematics. Dover, unabridged and corr. republication of the 1969 ed edition, 1981.
- Y. Saad. Iterative Solution of Indefinite Symmetric Linear Systems by Methods Using Orthogonal Polynomials over Two Disjoint Intervals. SIAM Journal on Numerical Analysis, 20(4):784–811, 1983.
- G. Szegő. Orthogonal Polynomials, volume 23 of Colloquium Publications. American Mathematical Society, Providence, Rhode Island, December 1939.
- Fast computation of Gauss quadrature nodes and weights on the whole real line. IMA Journal of Numerical Analysis, 36(1):337–358, October 2014.
- The Exponentially Convergent Trapezoidal Rule. SIAM Review, 56(3):385–458, 2014.
- T. Trogdon and S. Olver. A Riemann-Hilbert approach to Jacobi operators and Gaussian quadrature. IMA Journal of Numerical Analysis, 36(1):174–196, January 2014.
- T. Trogdon and S. Olver. Riemann–Hilbert Problems, Their Numerical Solution and the Computation of Nonlinear Special Functions. SIAM, Philadelphia, PA, 2016.