Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

CityTFT: Temporal Fusion Transformer for Urban Building Energy Modeling (2312.02375v1)

Published 4 Dec 2023 in stat.ML, cs.AI, and cs.LG

Abstract: Urban Building Energy Modeling (UBEM) is an emerging method to investigate urban design and energy systems against the increasing energy demand at urban and neighborhood levels. However, current UBEM methods are mostly physic-based and time-consuming in multiple climate change scenarios. This work proposes CityTFT, a data-driven UBEM framework, to accurately model the energy demands in urban environments. With the empowerment of the underlying TFT framework and an augmented loss function, CityTFT could predict heating and cooling triggers in unseen climate dynamics with an F1 score of 99.98 \% while RMSE of loads of 13.57 kWh.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube