Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consensus-Based Distributed Nonlinear Filtering with Kernel Mean Embedding (2312.01928v1)

Published 4 Dec 2023 in eess.SY, cs.SY, and eess.SP

Abstract: This paper proposes a consensus-based distributed nonlinear filter with kernel mean embedding (KME). This fills with gap of posterior density approximation with KME for distributed nonlinear dynamic systems. To approximate the posterior density, the system state is embedded into a higher-dimensional reproducing kernel Hilbert space (RKHS), and then the nonlinear measurement function is linearly converted. As a result, an update rule of KME of posterior distribution is established in the RKHS. To show the proposed distributed filter being capable of achieving the centralized estimation accuracy, a centralized filter, serving as an extension of the standard Kalman filter in the state space to the RKHS, is developed first. Benefited from the KME, the proposed distributed filter converges to the centralized one while maintaining the distributed pattern. Two examples are introduced to demonstrate the effectiveness of the developed filters in target tracking scenarios including nearly constantly moving target and turning target, respectively, with bearing-only, range and bearing measurements.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. B. Jia, M. Xin, and Y. Cheng, “High-degree cubature Kalman filter,” Automatica, vol. 49, no. 2, pp. 510–518, 2013.
  2. J. Lan and X. R. Li, “Nonlinear estimation by LMMSE-based estimation with optimized uncorrelated augmentation,” IEEE Transactions on Signal Processing, vol. 63, no. 16, pp. 4270–4283, 2015.
  3. J. Lan and X. R. Li, “Multiple conversions of measurements for nonlinear estimation,” IEEE Transactions on Signal Processing, vol. 65, no. 18, pp. 4956–4970, 2017.
  4. L. Guo, S. Hu, J. Zhou, and X. R. Li, “Nonlinear filtering based on third-degree approximation via sequential homotopy,” IEEE Transactions on Signal Processing, vol. 70, pp. 5334–5348, 2022.
  5. H. Liu, X. Shen, Z. Wang, and F. Meng, “Randomized multimodel multiple hypothesis tracking,” Science China Information Sciences, vol. 66, no. 9, 2023.
  6. Y. Tan, P. Weng, B. Chen, and L. Yu, “Nonlinear fusion estimation for false data injection attack signals in cyber-physical systems,” Science China Information Sciences, vol. 66, no. 7, Article 179203, 2023.
  7. A. Kutschireiter, L. Rast, and J. Drugowitsch, “Projection filtering with observed state increments with applications in continuous-time circular filtering,” IEEE Transactions on Signal Processing, vol. 70, pp. 686–700, 2022.
  8. A. T. M. Fisch, I. A. Eckley, and P. Fearnhead, “Innovative and additive outlier robust Kalman filtering with a robust particle filter,” IEEE Transactions on Signal Processing, vol. 70, pp. 47–56, 2022.
  9. J. Zhu, H. Wu, and W. Lu, “Fast particle filter tracking of guidewire in fluoroscopy,” IEEE Transactions on Medical Imaging, vol. 40, no. 2, pp. 562–573, 2021.
  10. O. Hlinka, F. Hlawatsch, and P. M. Djurić, “Distributed particle filtering in agent networks: A survey, classification, and comparison,” IEEE Signal Processing Magazine, vol. 30, no. 1, pp. 61–81, 2013.
  11. S. Xu, K. Doğançay, and H. Hmam, “Distributed pseudolinear estimation and UAV path optimization for 3D AOA target tracking,” Signal Processing, vol. 133, pp. 64–78, 2017.
  12. I. Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Transactions on Automatic Control, vol. 54, no. 6, pp. 1254–1269, 2009.
  13. R. Olfati-Saber and J. S. Shamma, “Consensus filters for sensor networks and distributed sensor fusion,” in Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, Dec. 15, 2005, pp. 6698–6703.
  14. R. Olfati-Saber, “Distributed Kalman filter with embedded consensus filters,” in Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, Dec. 15, 2005, pp. 8179–8184.
  15. R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in 46th IEEE Conference on Decision and Control, New Orleans, USA, Dec. 12–14, 2007, pp. 5492–5498.
  16. S. P. Talebi and S. Werner, “Distributed Kalman filtering and control through embedded average consensus information fusion,” IEEE Transactions on Automatic Control, vol. 64, no. 10, pp. 4396–4403, 2019.
  17. S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.
  18. W. Li and Y. Jia, “Distributed consensus filtering for discrete-time nonlinear systems with non-Gaussian noise,” Signal Processing, vol. 92, no. 10, pp. 2464–2470, 2012.
  19. Q. Chen, W. Wang, C. Yin, X. Jin, and J. Zhou, “Distributed cubature information filtering based on weighted average consensus,” Neurocomputing, vol. 243, pp. 115–124, 2017.
  20. B. Xiao, Q. J. Wu, and L. Yan, “Multisensor fusion estimation of nonlinear systems with intermittent observations and heavy-tailed noises,” Science China Information Sciences, vol. 65, no. 9, Article 192203, 2022.
  21. D. Gu, J. Sun, Z. Hu, and H. Li, “Consensus based distributed particle filter in sensor networks,” in International Conference on Information and Automation, Changsha, China, Jun. 20–23, 2008, pp. 302–307.
  22. O. Hlinka, O. Slučiak, F. Hlawatsch, P. M. Djurić, and M. Rupp, “Distributed Gaussian particle filtering using likelihood consensus,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, May 22–27, 2011, pp. 3756–3759.
  23. O. Hlinka, F. Hlawatsch, and P. M. Djurić, “Consensus-based distributed particle filtering with distributed proposal adaptation,” IEEE Transactions on Signal Processing, vol. 62, no. 12, pp. 3029–3041, 2014.
  24. W. Xia, M. Sun, and Q. Wang, “Direct target tracking by distributed Gaussian particle filtering for heterogeneous networks,” IEEE Transactions on Signal Processing, vol. 68, pp. 1361–1373, 2020.
  25. W. Song, Z. Wang, J. Wang, F. E. Alsaadi, and J. Shan, “Distributed auxiliary particle filtering with diffusion strategy for target tracking: A dynamic event-triggered approach,” IEEE Transactions on Signal Processing, vol. 69, pp. 328–340, 2021.
  26. W. Song, Z. Wang, J. Wang, F. E. Alsaadi, and J. Shan, “Particle filtering for nonlinear/non-Gaussian systems with energy harvesting sensors subject to randomly occurring sensor saturations,” IEEE Transactions on Signal Processing, vol. 69, pp. 15–27, 2021.
  27. A. Smola, A. Gretton, L. Song, and B. Schölkopf, “A Hilbert space embedding for distributions,” in Algorithmic Learning Theory, M. Hutter, R. A. Servedio, and E. Takimoto, Eds.   Berlin, Heidelberg: Springer, 2007, pp. 13–31.
  28. L. Song, J. Huang, A. Smola, and K. Fukumizu, “Hilbert space embeddings of conditional distributions with applications to dynamical systems,” in Proceedings of the 26th Annual International Conference on Machine Learning, Montreal Quebec, Canada, Jun. 14–18, 2009, pp. 961–968.
  29. B. K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Schölkopf, and G. R. Lanckriet, “Hilbert space embeddings and metrics on probability measures,” The Journal of Machine Learning Research, vol. 11, pp. 1517–1561, 2010.
  30. L. Song, K. Fukumizu, and A. Gretton, “Kernel embeddings of conditional distributions: a unified kernel framework for nonparametric inference in graphical models,” IEEE Signal Processing Magazine, vol. 30, no. 4, pp. 98–111, 2013.
  31. M. Kanagawa, Y. Nishiyama, A. Gretton, and K. Fukumizu, “Monte Carlo filtering using kernel embedding of distributions,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28, no. 1, 2014.
  32. K. Muandet, K. Fukumizu, B. Sriperumbudur, and B. Schölkopf, “Kernel mean embedding of distributions: a review and beyond,” Foundations and Trends® in Machine Learning, vol. 10, no. 1–2, pp. 1–141, 2017.
  33. K. Fukumizu, L. Song, and A. Gretton, “Kernel Bayes’ rule: Bayesian inference with positive definite kernels,” The Journal of Machine Learning Research, vol. 14, no. 1, pp. 3753–3783, 2013.
  34. G. Gebhardt, A. Kupcsik, and G. Neumann, “The kernel Kalman rule—efficient nonparametric inference with recursive least squares,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1, 2017.
  35. M. Sun, M. E. Davies, I. K. Proudler, and J. R. Hopgood, “Adaptive kernel Kalman filter,” IEEE Transactions on Signal Processing, vol. 71, pp. 713–726, 2023.
  36. B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer theorem,” in Computational Learning Theory, D. Helmbold and B. Williamson, Eds.   Springer, Berlin, Heidelberg, 2001, vol. 2111, pp. 416–426.
  37. L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.
  38. R. J. Vanderbei and T. J. Carpenter, “Symmetric indefinite systems for interior point methods,” Mathematical programming, vol. 58, no. 1-3, pp. 1–32, 1993.
  39. X. R. Li and Z. Zhao, “Evaluation of estimation algorithms part I: incomprehensive measures of performance,” IEEE Transactions on Aerospace and Electronic Systems, vol. 42, no. 4, pp. 1340–1358, 2006.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Liping Guo (8 papers)
  2. Jimin Wang (17 papers)
  3. Yanlong Zhao (14 papers)
  4. Ji-Feng Zhang (26 papers)

Summary

We haven't generated a summary for this paper yet.