Output-sensitive Complexity of Multi-Objective Integer Network Flow Problems (2312.01786v4)
Abstract: This paper addresses the output-sensitive complexity for linear multi-objective integer minimum cost flow (MOIMCF) problems and provides insights about the time complexity for enumerating all supported nondominated vectors. The paper shows that there can not exist an output-polynomial time algorithm for the enumeration of all supported nondominated vectors that determine the vectors in an ordered way in the outcome space unless NP = P. Moreover, novel methods for identifying supported nondominated vectors in bi-objective minimum cost flow (BOIMCF) problems are proposed, accompanied by a numerical comparison between decision- and objective-space methods. A novel, equivalent and more compact formulation of the minimum cost flow ILP formulation used in the e-constrained-scalarization approach is introduced, demonstrating enhanced efficiency in the numerical tests
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.