Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Joint Task Partitioning and Parallel Scheduling in Device-Assisted Mobile Edge Networks (2312.01751v1)

Published 4 Dec 2023 in cs.DC

Abstract: With the development of the Internet of Things (IoT), certain IoT devices have the capability to not only accomplish their own tasks but also simultaneously assist other resource-constrained devices. Therefore, this paper considers a device-assisted mobile edge computing system that leverages auxiliary IoT devices to alleviate the computational burden on the edge computing server and enhance the overall system performance. In this study, computationally intensive tasks are decomposed into multiple partitions, and each task partition can be processed in parallel on an IoT device or the edge server. The objective of this research is to develop an efficient online algorithm that addresses the joint optimization of task partitioning and parallel scheduling under time-varying system states, posing challenges to conventional numerical optimization methods. To address these challenges, a framework called online task partitioning action and parallel scheduling policy generation (OTPPS) is proposed, which is based on deep reinforcement learning (DRL). Specifically, the framework leverages a deep neural network (DNN) to learn the optimal partitioning action for each task by mapping input states. Furthermore, it is demonstrated that the remaining parallel scheduling problem exhibits NP-hard complexity when considering a specific task partitioning action. To address this subproblem, a fair and delay-minimized task scheduling (FDMTS) algorithm is designed. Extensive evaluation results demonstrate that OTPPS achieves near-optimal average delay performance and consistently high fairness levels in various environmental states compared to other baseline schemes.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.