Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1
Gemini 2.5 Flash 128 tok/s Pro
Gemini 2.5 Pro 41 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

NovoMol: Recurrent Neural Network for Orally Bioavailable Drug Design and Validation on PDGFRα Receptor (2312.01527v1)

Published 3 Dec 2023 in q-bio.BM, cs.AI, and q-bio.QM

Abstract: Longer timelines and lower success rates of drug candidates limit the productivity of clinical trials in the pharmaceutical industry. Promising de novo drug design techniques help solve this by exploring a broader chemical space, efficiently generating new molecules, and providing improved therapies. However, optimizing for molecular characteristics found in approved oral drugs remains a challenge, limiting de novo usage. In this work, we propose NovoMol, a novel de novo method using recurrent neural networks to mass-generate drug molecules with high oral bioavailability, increasing clinical trial time efficiency. Molecules were optimized for desirable traits and ranked using the quantitative estimate of drug-likeness (QED). Generated molecules meeting QED's oral bioavailability threshold were used to retrain the neural network, and, after five training cycles, 76% of generated molecules passed this strict threshold and 96% passed the traditionally used Lipinski's Rule of Five. The trained model was then used to generate specific drug candidates for the cancer-related PDGFR{\alpha} receptor and 44% of generated candidates had better binding affinity than the current state-of-the-art drug, Imatinib (with a receptor binding affinity of -9.4 kcal/mol), and the best-generated candidate at -12.9 kcal/mol. NovoMol provides a time/cost-efficient AI-based de novo method offering promising drug candidates for clinical trials.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.