Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Context-Enhanced Relational Operators with Vector Embeddings (2312.01476v1)

Published 3 Dec 2023 in cs.DB, cs.AI, and cs.LG

Abstract: Collecting data, extracting value, and combining insights from relational and context-rich multi-modal sources in data processing pipelines presents a challenge for traditional relational DBMS. While relational operators allow declarative and optimizable query specification, they are limited to data transformations unsuitable for capturing or analyzing context. On the other hand, representation learning models can map context-rich data into embeddings, allowing machine-automated context processing but requiring imperative data transformation integration with the analytical query. To bridge this dichotomy, we present a context-enhanced relational join and introduce an embedding operator composable with relational operators. This enables hybrid relational and context-rich vector data processing, with algebraic equivalences compatible with relational algebra and corresponding logical and physical optimizations. We investigate model-operator interaction with vector data processing and study the characteristics of the E-join operator. Using an example of string embeddings, we demonstrate enabling hybrid context-enhanced processing on relational join operators with vector embeddings. The importance of holistic optimization, from logical to physical, is demonstrated in an order of magnitude execution time improvement.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com