Emergent Mind

Abstract

This paper makes the first bridge between the classical differential/boomerang uniformity and the newly introduced $c$-differential uniformity. We show that the boomerang uniformity of an odd APN function is given by the maximum of the entries (except for the first row/column) of the function's $(-1)$-Difference Distribution Table. In fact, the boomerang uniformity of an odd permutation APN function equals its $(-1)$-differential uniformity. We next apply this result to easily compute the boomerang uniformity of several odd APN functions. In the second part we give two classes of differentially low-uniform functions obtained by modifying the inverse function. The first class of permutations (CCZ-inequivalent to the inverse) over a finite field $\mathbb{F}{pn}$ ($p$, an odd prime) is obtained from the composition of the inverse function with an order-$3$ cycle permutation, with differential uniformity $3$ if $p=3$ and $n$ is odd; $5$ if $p=13$ and $n$ is even; and $4$ otherwise. The second class is a family of binomials and we show that their differential uniformity equals~$4$. We next complete the open case of $p=3$ in the investigation started by G\" olo\u glu and McGuire (2014), for $p\geq 5$, and continued by K\"olsch (2021), for $p=2$, $n\geq 5$, on the characterization of $L1(X{pn-2})+L_2(X)$ (with linearized $L1,L2$) being a permutation polynomial. Finally, we extend to odd characteristic a result of Charpin and Kyureghyan (2010) providing an upper bound for the differential uniformity of the function and its switched version via a trace function.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.