Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A connection between the boomerang uniformity and the extended differential in odd characteristic and applications (2312.01434v2)

Published 3 Dec 2023 in cs.IT, cs.DM, math.IT, and math.NT

Abstract: This paper makes the first bridge between the classical differential/boomerang uniformity and the newly introduced $c$-differential uniformity. We show that the boomerang uniformity of an odd APN function is given by the maximum of the entries (except for the first row/column) of the function's $(-1)$-Difference Distribution Table. In fact, the boomerang uniformity of an odd permutation APN function equals its $(-1)$-differential uniformity. We next apply this result to easily compute the boomerang uniformity of several odd APN functions. In the second part we give two classes of differentially low-uniform functions obtained by modifying the inverse function. The first class of permutations (CCZ-inequivalent to the inverse) over a finite field $\mathbb{F}_{pn}$ ($p$, an odd prime) is obtained from the composition of the inverse function with an order-$3$ cycle permutation, with differential uniformity $3$ if $p=3$ and $n$ is odd; $5$ if $p=13$ and $n$ is even; and $4$ otherwise. The second class is a family of binomials and we show that their differential uniformity equals~$4$. We next complete the open case of $p=3$ in the investigation started by G\" olo\u glu and McGuire (2014), for $p\geq 5$, and continued by K\"olsch (2021), for $p=2$, $n\geq 5$, on the characterization of $L_1(X{pn-2})+L_2(X)$ (with linearized $L_1,L_2$) being a permutation polynomial. Finally, we extend to odd characteristic a result of Charpin and Kyureghyan (2010) providing an upper bound for the differential uniformity of the function and its switched version via a trace function.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube