Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

A Comparative Analysis Towards Melanoma Classification Using Transfer Learning by Analyzing Dermoscopic Images (2312.01212v1)

Published 2 Dec 2023 in eess.IV and cs.CV

Abstract: Melanoma is a sort of skin cancer that starts in the cells known as melanocytes. It is more dangerous than other types of skin cancer because it can spread to other organs. Melanoma can be fatal if it spreads to other parts of the body. Early detection is the key to cure, but it requires the skills of skilled doctors to diagnose it. This paper presents a system that combines deep learning techniques with established transfer learning methods to enable skin lesions classification and diagnosis of melanoma skin lesions. Using Convolutional Neural Networks, it presents a method for categorizing melanoma images into benign and malignant images in this research (CNNs). Researchers used 'Deep Learning' techniques to train an expansive number of photos & essentially to get the expected result deep neural networks to need to be trained with a huge number of parameters as dermoscopic images are sensitive & very hard to classify. This paper, has been emphasized building models with less complexity and comparatively better accuracy with limited datasets & partially fewer deep networks so that the system can predict Melanoma at ease from input dermoscopic images as correctly as possible within devices with less computational power. The dataset has been obtained from ISIC Archive. Multiple pre-trained models ResNet101, DenseNet, EfficientNet, InceptionV3 have been implemented using transfer learning techniques to complete the comparative analysis & every model achieved good accuracy. Before training the models, the data has been augmented by multiple parameters to improve the accuracy. Moreover, the results are better than the previous state-of-the-art approaches & adequate to predict melanoma. Among these architectures, DenseNet performed better than the others which gives a validation accuracy of 96.64%, validation loss of 9.43% & test set accuracy of 99.63%.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.