Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

From Voices to Validity: Leveraging Large Language Models (LLMs) for Textual Analysis of Policy Stakeholder Interviews (2312.01202v1)

Published 2 Dec 2023 in cs.HC, cs.AI, and cs.CL

Abstract: Obtaining stakeholders' diverse experiences and opinions about current policy in a timely manner is crucial for policymakers to identify strengths and gaps in resource allocation, thereby supporting effective policy design and implementation. However, manually coding even moderately sized interview texts or open-ended survey responses from stakeholders can often be labor-intensive and time-consuming. This study explores the integration of LLMs--like GPT-4--with human expertise to enhance text analysis of stakeholder interviews regarding K-12 education policy within one U.S. state. Employing a mixed-methods approach, human experts developed a codebook and coding processes as informed by domain knowledge and unsupervised topic modeling results. They then designed prompts to guide GPT-4 analysis and iteratively evaluate different prompts' performances. This combined human-computer method enabled nuanced thematic and sentiment analysis. Results reveal that while GPT-4 thematic coding aligned with human coding by 77.89% at specific themes, expanding to broader themes increased congruence to 96.02%, surpassing traditional NLP methods by over 25%. Additionally, GPT-4 is more closely matched to expert sentiment analysis than lexicon-based methods. Findings from quantitative measures and qualitative reviews underscore the complementary roles of human domain expertise and automated analysis as LLMs offer new perspectives and coding consistency. The human-computer interactive approach enhances efficiency, validity, and interpretability of educational policy research.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)