Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

STREAM: Software Tool for Routing Efficiently Advanced Macrofluidics (2312.01130v1)

Published 2 Dec 2023 in cs.RO

Abstract: The current fabrication and assembly of fluidic circuits for soft robots relies heavily on manual processes; as the complexity of fluidic circuits increases, manual assembly becomes increasingly arduous, error-prone, and timeconsuming. We introduce a software tool that generates printable fluidic networks automatically. We provide a library of fluidic logic elements that are easily 3D printed from thermoplastic polyurethanes using Fused Deposition Modeling only. Our software tool and component library allow the development of arbitrary soft digital circuits. We demonstrate a variable frequency ring oscillator and a full adder. The simplicity of our approach using FDM printers only, democratizes fluidic circuit implementation beyond specialized laboratories. Our software is available on GitHub (https://github.com/roboticmaterialsgroup/FluidLogic).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Y.-F. Zhang, N. Zhang, H. Hingorani, N. Ding, D. Wang, C. Yuan, B. Zhang, G. Gu, and Q. Ge, “Soft robots: Fast‐response, stiffness‐tunable soft actuator by hybrid multimaterial 3d printing (adv. funct. mater. 15/2019),” Advanced Functional Materials, vol. 29, 04 2019.
  2. D. J. Preston, H. J. Jiang, V. Sanchez, P. Rothemund, J. Rawson, M. P. Nemitz, W.-K. Lee, Z. Suo, C. J. Walsh, and G. M. Whitesides, “A soft ring oscillator,” Science Robotics, vol. 4, no. 31, p. eaaw5496, 2019.
  3. E. W. Hawkes, L. H. Blumenschein, J. D. Greer, and A. M. Okamura, “A soft robot that navigates its environment through growth,” Science Robotics, vol. 2, no. 8, p. eaan3028, 2017.
  4. W. Hu, G. Lum, M. Mastrangeli, and M. Sitti, “Small-scale soft-bodied robot with multimodal locomotion,” Nature, vol. 554, 02 2018.
  5. D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” vol. 521, no. 7553, pp. 467–475.
  6. J. Walker, T. Zidek, C. Harbel, S. Yoon, F. S. Strickland, S. Kumar, and M. Shin, “Soft robotics: A review of recent developments of pneumatic soft actuators,” in Actuators, vol. 9, no. 1.   MDPI, 2020, p. 3.
  7. J. D. Hubbard, R. Acevedo, K. M. Edwards, A. T. Alsharhan, Z. Wen, J. Landry, K. Wang, S. Schaffer, and R. D. Sochol, “Fully 3d-printed soft robots with integrated fluidic circuitry,” Science Advances, vol. 7, no. 29, p. eabe5257, 2021.
  8. A. Tseng, K. Chen, C. Chen, and K. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 26, no. 2, pp. 141–149, 2003.
  9. A. Vitale, M. Quaglio, S. L. Marasso, A. Chiodoni, M. Cocuzza, and R. Bongiovanni, “Direct photolithography of perfluoropolyethers for solvent-resistant microfluidics,” Langmuir, vol. 29, no. 50, pp. 15 711–15 718, 2013, pMID: 24266688.
  10. M. Haiducu, M. Rahbar, I. Foulds, R. Johnstone, D. Sameoto, and M. Parameswaran, “Deep-uv patterning of commercial grade pmma for low-cost, large-scale microfluidics,” Journal of Micromechanics and Microengineering, vol. 18, no. 11, p. 115029, 2008.
  11. E. H. Childs, A. V. Latchman, A. C. Lamont, J. D. Hubbard, and R. D. Sochol, “Additive assembly for polyjet-based multi-material 3d printed microfluidics,” Journal of Microelectromechanical Systems, vol. 29, no. 5, pp. 1094–1096, 2020.
  12. V. Faustino, S. O. Catarino, R. Lima, and G. Minas, “Biomedical microfluidic devices by using low-cost fabrication techniques: A review,” Journal of Biomechanics, vol. 49, no. 11, pp. 2280–2292, 2016, selected Articles from the International Conference on CFD in Medicine and Biology (Albufeira, Portugal – August 30th - September 4th, 2015).
  13. A. Zatopa, S. Walker, and Y. Menguc, “Fully soft 3d-printed electroactive fluidic valve for soft hydraulic robots,” Soft robotics, vol. 5, no. 3, pp. 258–271, 2018.
  14. D. Drotman, S. Jadhav, D. Sharp, C. Chan, and M. T. Tolley, “Electronics-free pneumatic circuits for controlling soft-legged robots,” Science Robotics, vol. 6, no. 51, p. eaay2627, 2021.
  15. P. Rothemund, A. Ainla, L. Belding, D. J. Preston, S. Kurihara, Z. Suo, and G. M. Whitesides, “A soft, bistable valve for autonomous control of soft actuators,” Science Robotics, 2018.
  16. J. A. Tracz, L. Wille, D. Pathiraja, S. V. Kendre, R. Pfisterer, E. Turett, C. K. Abrahamsson, S. E. Root, W. K. Lee, D. J. Preston, H. J. Jiang, G. M. Whitesides, and M. P. Nemitz, “Tube-Balloon Logic for the Exploration of Fluidic Control Elements,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5483–5488, 4 2022.
  17. C. J. Decker, H. J. Jiang, M. P. Nemitz, S. E. Root, A. Rajappan, J. T. Alvarez, J. Tracz, L. Wille, D. J. Preston, and G. M. Whitesides, “Programmable soft valves for digital and analog control,” Proceedings of the National Academy of Sciences, vol. 119, no. 40, p. e2205922119, 2022.
  18. S. Wang, L. He, and P. Maiolino, “Design and characterization of a 3d-printed pneumatically-driven bistable valve with tunable characteristics,” IEEE Robotics and Automation Letters, vol. 7, no. 1, pp. 112–119, jan 2022.
  19. Y. Zhai, A. D. Boer, J. Yan, B. Shih, M. Faber, J. Speros, R. Gupta, and M. T. Tolley, “Desktop fabrication of monolithic soft robotic devices with embedded fluidic control circuits,” Science Robotics, vol. 8, no. 79, p. eadg3792, 2023.
  20. S. V. Kendre, L. Whiteside, T. Y. Fan, J. A. Tracz, G. T. Teran, T. C. Underwood, M. E. Sayed, H. J. Jiang, A. A. Stokes, D. J. Preston, G. M. Whitesides, and M. P. Nemitz, “The Soft Compiler: A Web-Based Tool for the Design of Modular Pneumatic Circuits for Soft Robots,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6060–6066, 7 2022.
  21. A. Georgopoulou, B. Vanderborght, and F. Clemens, “Multi-material 3d printing of thermoplastic elastomers for development of soft robotic structures with integrated sensor elements,” in Industrializing Additive Manufacturing: Proceedings of AMPA2020.   Springer, 2021, pp. 67–81.
  22. O. D. Yirmibesoglu, J. Morrow, S. Walker, W. Gosrich, R. Cañizares, H. Kim, U. Daalkhaijav, C. Fleming, C. Branyan, and Y. Menguc, “Direct 3d printing of silicone elastomer soft robots and their performance comparison with molded counterparts,” in 2018 IEEE international conference on soft robotics (RoboSoft).   IEEE, 2018, pp. 295–302.
  23. E. Wilke, “Nozzle for printing tubes,” US patent application: 63/434,503, 2023.
  24. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
  25. M. Mandal and B. C. Sarkar, “Ring oscillators: Characteristics and applications,” 2010.
  26. Z. Zhou, G. He, K. Zhang, X. Qi, and D. Sun, “A fluidic adder circuit based on a microfluidic system,” IEEE Electron Device Letters, vol. 40, no. 6, pp. 977–980, 2019.
  27. M. P. Nemitz, C. K. Abrahamsson, L. Wille, A. A. Stokes, D. J. Preston, and G. M. Whitesides, “Soft non-volatile memory for non-electronic information storage in soft robots,” in 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), 2020, pp. 7–12.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Lehong Wang (4 papers)
  2. Savita V. Kendre (5 papers)
  3. Haotian Liu (79 papers)
  4. Markus P. Nemitz (8 papers)

Summary

  • The paper introduces a software tool that automates routing for 3D printable fluidic circuits through a modified A* algorithm integrated within Blender.
  • It demonstrates practical applications including variable frequency ring oscillator and full adder circuits in soft robotics.
  • The tool simplifies design, reduces labor requirements, and paves the way for open-source collaboration in advanced macrofluidics.

Introduction

In the evolving field of soft robotics, researchers are harnessing the unique capabilities of soft materials, such as adaptability and resilience, to create robots more akin to biological systems than their rigid-bodied predecessors. Fluidic circuits form a pivotal component of soft robotic systems, serving as the control mechanism behind their movement and functionality. Traditionally, the creation of these fluidic networks has been both intricate and labor-intensive, often requiring specialized labs and knowledge. To address these bottlenecks, researchers have developed a new software tool that automates the routing process and generates printable fluidic circuits.

Software Design and Implementation

The focal point of this innovation is a software tool, integrated with an existing 3D creation suite called Blender. This tool employs a modified A* routing algorithm to lay out tubing networks that connect various fluidic logic elements. Users interact with a graphical interface, selecting components and defining connections effortlessly. The software then skillfully generates a 3D printable model inclusive of all fluidic channels.

Accompanying this tool is a library of 3D printable fluidic logic elements such as valves and gates. These elements can be rendered in materials suitable for Fused Deposition Modeling (FDM) printers, a common and cost-effective type of 3D printer. The inspiration comes from PCB design automation, aiming to transfer the ease of creating electronic circuits into the fluidic domain.

Practical Applications and Demonstrations

The software's capability is illustrated through two demonstrative applications – a variable frequency ring oscillator and a full adder fluidic circuit. The ring oscillator showcases how altering the flow path can change the frequency of the output signal. For the full adder, the software automates the assembly of a previously complex process, connecting numerous gates and channels to perform binary addition. These demonstrations not only validate the software's practicality but also highlight its potential in simplifying the design and production of soft robotic components.

Future Prospects and Significance

This software represents a significant stride towards fully automated design and fabrication of fluidic control systems for soft robotics. Future developments could include a focus on monolithic logic gates and enhanced fluidic circuits for greater complexity and functionality. The open-source nature of this project, with resources available on GitHub, paves the way for a collaborative effort in advancing the field.

The ramifications of this work extend beyond simply making soft robotics more accessible. Fluidic circuits are inherently resistant to electromagnetic interference and physical damage, providing a unique robustness that could be crucial in extreme environments where electronics may falter. As such, they are poised to be an influential tool in the expanding ecosystem of intelligent robotic systems.