Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Consistency Prototype Module and Motion Compensation for Few-Shot Action Recognition (CLIP-CP$\mathbf{M^2}$C) (2312.01083v1)

Published 2 Dec 2023 in cs.CV

Abstract: Recently, few-shot action recognition has significantly progressed by learning the feature discriminability and designing suitable comparison methods. Still, there are the following restrictions. (a) Previous works are mainly based on visual mono-modal. Although some multi-modal works use labels as supplementary to construct prototypes of support videos, they can not use this information for query videos. The labels are not used efficiently. (b) Most of the works ignore the motion feature of video, although the motion features are essential for distinguishing. We proposed a Consistency Prototype and Motion Compensation Network(CLIP-CP$M2$C) to address these issues. Firstly, we use the CLIP for multi-modal few-shot action recognition with the text-image comparison for domain adaption. Secondly, in order to make the amount of information between the prototype and the query more similar, we propose a novel method to compensate for the text(prompt) information of query videos when text(prompt) does not exist, which depends on a Consistency Loss. Thirdly, we use the differential features of the adjacent frames in two directions as the motion features, which explicitly embeds the network with motion dynamics. We also apply the Consistency Loss to the motion features. Extensive experiments on standard benchmark datasets demonstrate that the proposed method can compete with state-of-the-art results. Our code is available at the URL: https://github.com/xxx/xxx.git.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.