Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 179 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Noisy probing dose facilitated dose prediction for pencil beam scanning proton therapy: physics enhances generalizability (2312.00975v1)

Published 2 Dec 2023 in physics.med-ph and cs.LG

Abstract: Purpose: Prior AI-based dose prediction studies in photon and proton therapy often neglect underlying physics, limiting their generalizability to handle outlier clinical cases, especially for pencil beam scanning proton therapy (PBSPT). Our aim is to design a physics-aware and generalizable AI-based PBSPT dose prediction method that has the underlying physics considered to achieve high generalizability to properly handle the outlier clinical cases. Methods and Materials: This study analyzed PBSPT plans of 103 prostate and 78 lung cancer patients from our institution,with each case comprising CT images, structure sets, and plan doses from our Monte-Carlo dose engine (serving as the ground truth). Three methods were evaluated in the ablation study: the ROI-based method, the beam mask and sliding window method, and the noisy probing dose method. Twelve cases with uncommon beam angles or prescription doses tested the methods' generalizability to rare treatment planning scenarios. Performance evaluation used DVH indices, 3D Gamma passing rates (3%/2mm/10%), and dice coefficients for dose agreement. Results: The noisy probing dose method showed improved agreement of DVH indices, 3D Gamma passing rates, and dice coefficients compared to the conventional methods for the testing cases. The noisy probing dose method showed better generalizability in the 6 outlier cases than the ROI-based and beam mask-based methods with 3D Gamma passing rates (for prostate cancer, targets: 89.32%$\pm$1.45% vs. 93.48%$\pm$1.51% vs. 96.79%$\pm$0.83%, OARs: 85.87%$\pm$1.73% vs. 91.15%$\pm$1.13% vs. 94.29%$\pm$1.01%). The dose predictions were completed within 0.3 seconds. Conclusions: We've devised a novel noisy probing dose method for PBSPT dose prediction in prostate and lung cancer patients. With more physics included, it enhances the generalizability of dose prediction in handling outlier clinical cases.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube