Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quick Back-Translation for Unsupervised Machine Translation (2312.00912v1)

Published 1 Dec 2023 in cs.CL, cs.LG, and cs.PL

Abstract: The field of unsupervised machine translation has seen significant advancement from the marriage of the Transformer and the back-translation algorithm. The Transformer is a powerful generative model, and back-translation leverages Transformer's high-quality translations for iterative self-improvement. However, the Transformer is encumbered by the run-time of autoregressive inference during back-translation, and back-translation is limited by a lack of synthetic data efficiency. We propose a two-for-one improvement to Transformer back-translation: Quick Back-Translation (QBT). QBT re-purposes the encoder as a generative model, and uses encoder-generated sequences to train the decoder in conjunction with the original autoregressive back-translation step, improving data throughput and utilization. Experiments on various WMT benchmarks demonstrate that a relatively small number of refining steps of QBT improve current unsupervised machine translation models, and that QBT dramatically outperforms standard back-translation only method in terms of training efficiency for comparable translation qualities.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.