Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Generative Parameter-Efficient Fine-Tuning (2312.00700v4)

Published 1 Dec 2023 in cs.CV and cs.LG

Abstract: We present Generative Parameter-Efficient Fine-Tuning (GIFT) for adapting pretrained Transformer backbones on downstream tasks. GIFT learns to generate the fine-tuned weights for a layer directly from its pretrained weights. The GIFT network is parameterized in a minimally-simple way by two linear layers (without bias terms), and is shared by different pretrained layers selected for fine-tuning (e.g., the Query layers), which result in significantly fewer trainable parameters compared to the layer-specific methods like Low-Rank Adapter (LoRA). We also show this formulation bridges parameter-efficient fine-tuning and representation fine-tuning. We perform comprehensive experiments on natural language tasks (commonsense and arithmetic reasoning, instruction tuning, and sequence classification) and computer vision tasks (fine-grained classification). We obtain the best performance and parameter efficiency among baselines on commonsense and arithmetic reasoning, and instruction following using the Llama family of models and on visual recognition benchmarks using Vision Transformers. Notably, compared to LoRA, we obtain 5.7% absolute increase in average accuracy with 14 times reduction of parameters on Commonsense170k using Llama-3 (8B), and 5.4% absolute increase in the win rate with 4 times reduction of parameters using Llama-2 (7B) during instruction tuning. Our GIFT also obtains a slightly higher win rate on instruction tuning than GPT 3.5 (Turbo 1106).

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com