Papers
Topics
Authors
Recent
2000 character limit reached

Attack Detection Using Item Vector Shift in Matrix Factorisation Recommenders (2312.00512v1)

Published 1 Dec 2023 in cs.IR

Abstract: This paper proposes a novel method for detecting shilling attacks in Matrix Factorization (MF)-based Recommender Systems (RS), in which attackers use false user-item feedback to promote a specific item. Unlike existing methods that use either use supervised learning to distinguish between attack and genuine profiles or analyse target item rating distributions to detect false ratings, our method uses an unsupervised technique to detect false ratings by examining shifts in item preference vectors that exploit rating deviations and user characteristics, making it a promising new direction. The experimental results demonstrate the effectiveness of our approach in various attack scenarios, including those involving obfuscation techniques.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.