Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TransURL: Improving malicious URL detection with multi-layer Transformer encoding and multi-scale pyramid features (2312.00508v3)

Published 1 Dec 2023 in cs.CR

Abstract: Machine learning progress is advancing the detection of malicious URLs. However, advanced Transformers applied to URLs face difficulties in extracting local information, character-level details, and structural relationships. To address these challenges, we propose a novel approach for malicious URL detection, named TransURL. This method is implemented by co-training the character-aware Transformer with three feature modules: Multi-Layer Encoding, Multi-Scale Feature Learning, and Spatial Pyramid Attention. This specialized Transformer enables TransURL to extract embeddings with character-level information from URL token sequences, with the three modules aiding the fusion of multi-layer Transformer encodings and the capture of multi-scale local details and structural relationships. The proposed method is evaluated across several challenging scenarios, including class imbalance learning, multi-classification, cross-dataset testing, and adversarial sample attacks. Experimental results demonstrate a significant improvement compared to previous methods. For instance, it achieved a peak F1-score improvement of 40% in class-imbalanced scenarios and surpassed the best baseline by 14.13% in accuracy for adversarial attack scenarios. Additionally, a case study demonstrated that our method accurately identified all 30 active malicious web pages, whereas two previous state-of-the-art methods missed 4 and 7 malicious web pages, respectively. The codes and data are available at: https://github.com/Vul-det/TransURL/.

Summary

We haven't generated a summary for this paper yet.