Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adaptability of Computer Vision at the Tactical Edge: Addressing Environmental Uncertainty (2312.00269v1)

Published 1 Dec 2023 in cs.CV

Abstract: Computer Vision (CV) systems are increasingly being adopted into Command and Control (C2) systems to improve intelligence analysis on the battlefield, the tactical edge. CV systems leverage AI algorithms to help visualize and interpret the environment, enhancing situational awareness. However, the adaptability of CV systems at the tactical edge remains challenging due to rapidly changing environments and objects which can confuse the deployed models. A CV model leveraged in this environment can become uncertain in its predictions, as the environment and the objects existing in the environment begin to change. Additionally, mission objectives can rapidly change leading to adjustments in technology, camera angles, and image resolutions. All of which can negatively affect the performance of and potentially introduce uncertainty into the system. When the training environment and/or technology differs from the deployment environment, CV models can perform unexpectedly. Unfortunately, most scenarios at the tactical edge do not incorporate Uncertainty Quantification (UQ) into their deployed C2 and CV systems. This concept paper explores the idea of synchronizing robust data operations and model fine-tuning driven by UQ all at the tactical edge. Specifically, curating datasets and training child models based on the residuals of predictions, using these child models to calculate prediction intervals (PI), and then using these PI to calibrate the deployed models. By incorporating UQ into the core operations surrounding C2 and CV systems at the tactical edge, we can help drive purposeful adaptability on the battlefield.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)