Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DNS SLAM: Dense Neural Semantic-Informed SLAM (2312.00204v1)

Published 30 Nov 2023 in cs.CV

Abstract: In recent years, coordinate-based neural implicit representations have shown promising results for the task of Simultaneous Localization and Mapping (SLAM). While achieving impressive performance on small synthetic scenes, these methods often suffer from oversmoothed reconstructions, especially for complex real-world scenes. In this work, we introduce DNS SLAM, a novel neural RGB-D semantic SLAM approach featuring a hybrid representation. Relying only on 2D semantic priors, we propose the first semantic neural SLAM method that trains class-wise scene representations while providing stable camera tracking at the same time. Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details and to output color, density, and semantic class information, enabling many downstream applications. To further enable real-time tracking, we introduce a lightweight coarse scene representation which is trained in a self-supervised manner in latent space. Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking while maintaining a commendable operational speed on off-the-shelf hardware. Further, our method outputs class-wise decomposed reconstructions with better texture capturing appearance and geometric details.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Kunyi Li (4 papers)
  2. Michael Niemeyer (29 papers)
  3. Nassir Navab (459 papers)
  4. Federico Tombari (214 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.