Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DNS SLAM: Dense Neural Semantic-Informed SLAM (2312.00204v1)

Published 30 Nov 2023 in cs.CV

Abstract: In recent years, coordinate-based neural implicit representations have shown promising results for the task of Simultaneous Localization and Mapping (SLAM). While achieving impressive performance on small synthetic scenes, these methods often suffer from oversmoothed reconstructions, especially for complex real-world scenes. In this work, we introduce DNS SLAM, a novel neural RGB-D semantic SLAM approach featuring a hybrid representation. Relying only on 2D semantic priors, we propose the first semantic neural SLAM method that trains class-wise scene representations while providing stable camera tracking at the same time. Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details and to output color, density, and semantic class information, enabling many downstream applications. To further enable real-time tracking, we introduce a lightweight coarse scene representation which is trained in a self-supervised manner in latent space. Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking while maintaining a commendable operational speed on off-the-shelf hardware. Further, our method outputs class-wise decomposed reconstructions with better texture capturing appearance and geometric details.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube