Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Galaxy Classification: A machine learning approach for classifying shapes using numerical data (2312.00184v1)

Published 30 Nov 2023 in cs.CV and stat.AP

Abstract: The classification of galaxies as spirals or ellipticals is a crucial task in understanding their formation and evolution. With the arrival of large-scale astronomical surveys, such as the Sloan Digital Sky Survey (SDSS), astronomers now have access to images of a vast number of galaxies. However, the visual inspection of these images is an impossible task for humans due to the sheer number of galaxies to be analyzed. To solve this problem, the Galaxy Zoo project was created to engage thousands of citizen scientists to classify the galaxies based on their visual features. In this paper, we present a machine learning model for galaxy classification using numerical data from the Galaxy Zoo[5] project. Our model utilizes a convolutional neural network architecture to extract features from galaxy images and classify them into spirals or ellipticals. We demonstrate the effectiveness of our model by comparing its performance with that of human classifiers using a subset of the Galaxy Zoo dataset. Our results show that our model achieves high accuracy in classifying galaxies and has the potential to significantly enhance our understanding of the formation and evolution of galaxies.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.