Papers
Topics
Authors
Recent
2000 character limit reached

A Video is Worth 10,000 Words: Training and Benchmarking with Diverse Captions for Better Long Video Retrieval (2312.00115v2)

Published 30 Nov 2023 in cs.CV and cs.CL

Abstract: Existing long video retrieval systems are trained and tested in the paragraph-to-video retrieval regime, where every long video is described by a single long paragraph. This neglects the richness and variety of possible valid descriptions of a video, which could range anywhere from moment-by-moment detail to a single phrase summary. To provide a more thorough evaluation of the capabilities of long video retrieval systems, we propose a pipeline that leverages state-of-the-art LLMs to carefully generate a diverse set of synthetic captions for long videos. We validate this pipeline's fidelity via rigorous human inspection. We use synthetic captions from this pipeline to perform a benchmark of a representative set of video LLMs using long video datasets, and show that the models struggle on shorter captions. We show that finetuning on this data can both mitigate these issues (+2.8% R@1 over SOTA on ActivityNet with diverse captions), and even improve performance on standard paragraph-to-video retrieval (+1.0% R@1 on ActivityNet). We also use synthetic data from our pipeline as query expansion in the zero-shot setting (+3.4% R@1 on ActivityNet). We derive insights by analyzing failure cases for retrieval with short captions. For data access and other details, please refer to our project website at https://mgwillia.github.io/10k-words.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub