Papers
Topics
Authors
Recent
2000 character limit reached

Multimodal Foundation Models for Material Property Prediction and Discovery (2312.00111v4)

Published 30 Nov 2023 in cs.LG and cond-mat.mtrl-sci

Abstract: Artificial intelligence is transforming computational materials science, improving the prediction of material properties, and accelerating the discovery of novel materials. Recently, publicly available material data repositories have grown rapidly. This growth encompasses not only more materials but also a greater variety and quantity of their associated properties. Existing machine learning efforts in materials science focus primarily on single-modality tasks, i.e. relationships between materials and a single physical property, thus not taking advantage of the rich and multimodal set of material properties. Here, we introduce Multimodal Learning for Materials (MultiMat), which enables self-supervised multi-modality training of foundation models for materials. We demonstrate our framework's potential using data from the Materials Project database on multiple axes: (i) MultiMat achieves state-of-the-art performance for challenging material property prediction tasks; (ii) MultiMat enables novel and accurate material discovery via latent space similarity, enabling screening for stable materials with desired properties; and (iii) MultiMat encodes interpretable emergent features that may provide novel scientific insights.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.